72 Strängar i månsken II Normat 2/2003
[6] B. M. Dwork, On p-adic diff erential equations. IV. Generalized hypergeometric
functions as p-adic analytic functions in one variable. Ann. sci. l’École Norm. Sup.
6, 295–316 (1973).
[7] D. Ford, J. McKay and S. Norton, More on replicable functions. Commun. Alg. 22
5175–5193 (1994).
[8] P. Goddard, The work of R.E. Borcherds. math.QA/9808136, also in Proc. Intern.
Congr. Berlin. (1998).
[9] M. Jinzenji and M. Nagura, Mirror symmetry and an exact calculation of N 2
point correlation function on Calabi–Yau manifold embedded in CP
N 1
.
hep-th/9409029.
[10] A. Klemm and S. Theisen, Considerations of one-modulus Calabi–Yau
compactifications: Picard–Fuchs equations, Kähler potentials and mirror maps.
hep-th/9205041.
[11] A. Klemm, B. H Lian, S. S. Roan and S.-T. Yau, A note on ODEs from mirror
symmetry. hep-th/9407192.
[12] B. H. Lian and S.-T. Yau, Arithmetic properties of mirror map and quantum
coupling. hep-th/9411234.
[13] B. H. Lian and S.-T. Yau, Mirror maps, modular relations and hypergeometric
series I. hep-th/9507151.
[14] B. H. Lian, K. Liu and S.-T. Yau, Mirror principle I. alg-geom/9712011.
[15] A. Libgober and J. Teitelbaum, Lines on Calabi–Yau complete intersections, mirror
symmetry, and Picard–Fuchs equations. Int. Math. Research Notices 1, 29–39
(1993), alg-geom/9301001.
[16] J. McKay and H. Strauss, The q-series of monstrous moonshine and the
decomposition of the head characters. Commun. Alg. 18, 253–278 (1990).
[17] D. R. Morrison, Picard–Fuchs equations and mirror maps for hypersurfaces.
hep-th/9111025.
[18] M. Nagura and K. Sugiyama, Mirror symmetry of K3 and torus. hep-th/9312159.
[19] M. Noguchi, Mirror symmetry of Calabi–Yau manifolds and flat coordinates.
hep-th/9609163.
Appendix.
Katalog över kända differentialekvationer av formen
4
x(a
4
+2a
3
+ b
2
+(b a) + c)
y =0
där a, b, c är heltal och där spegelavbildningen och Yukawakopplingen har heltalsko-
efficienter. Referenser ges utom i exempel 9, som jag inte har lyckats finna i littera-
turen. Ett e-mail från C. Doran och J. Morgan (12.2.03) visar att de också funnit
denna ekvation men ännu inte vet om de n kommer från en Calabi–Yau-mångfald.
De be kräftar att det inte finns mer än 14 fall, med ”Hodgeindex h
1,1
=1”.
almkvist.tex,v 1.12