1018 Maria Johansson, Lars-Erik Persson och Anna Wedestig Normat 3/2003
5 Beckenbach, E. F. and Bellman, R., Inequalities. Berlin, Springer-Verlag. (1983).
6 Bennett, G., Inequalities complimentary to Hardy. Quart. J. Math. Oxford Ser. (2)
49 (1998), no. 196, 395–432.
7 Bennett, G., Some elementary inequalities. III. Quart. J. Math. Oxford Ser. (2) 42
(1991), no. 166, 149–174.
8 Carleman, T., Sur les fonctions quasi-analytiques. Comptes rendus du V
e
Congres
des Mathematiciens Scandinaves, Helsingfors, (1922), 181–196.
9 Carleman, T. and Hardy, G. H., Fourier series and analytic functions. Proc. Royal
Soc. A 101 (1922), 124–133.
10 Carleson L., A proof of an inequality of Carleman. Proc. Amer. Math. Soc. 5
(1954), 932–933.
11 Čižmešija, A. and Pečarić, J., Classical Hardy’s and Carleman’s inequalities and
mixed means. Survey on classical inequalities (Ed: T. M. Rassias), Kluwer Acad.
Publ., Dordrecht–Boston–London, 2000, 27–65.
12 Čižmešija, A. and Pečarić, J., Mixed means and Hardy’s inequality. Math. Inequal.
Appl. 1 (1998), no. 4, 491–506.
13 Čižmešija, A., Pečarić, J. and Persson, L. E., On strengthened Hardy and
Pólya–Knopp’s inequalities. Research report, Department of Mathematics, Luleå
University of Technology, 2002, submitted (12 pages).
14 Cohen, P. J., A simple proof of the Denjoy–Carleman theorem. Amer. Math.
Monthly 75 (1968), 26–31.
15 Cochran, J. A. and Lee C.-S., Inequalities related to Hardy’s and Heinig’s. Math.
Proc. Cambridge Philos. Soc. 96 (1984), no. 1, 1–7.
16 de Bruijn, N. G., Carleman’s inequality for finite series. Nederl. Akad. Wetensch.
Proc. Ser. A 66 (= Indag. Math. 25, 1963, 505–514).
17 Godunova, E. K., Inequalities with convex functions. Am. Math. Soc., Transl., II.
Ser. 88, 57–66 (1970); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 1965, no.
4(47), (1965), 45–53.
18 Gyllenberg, M. and Yan, P., On a conjecture by Yang. J. Math. Anal. Appl. 264
(2001), no. 2, 687–690.
19 Gårding, L., Matematik och matematiker. Matematiken i Sverige för 1950. LundBest å sitere
den svenske
utgaven?
University Press, 1994.
20 Hardy, G. H., Notes on a theorem of Hilbert. Math. Z. 6 (1920), 314–317.
21 Hardy, G. H., Notes on some points in the integral calculus. LX, Messenger of
Mathematics 54 (1925), 150–156.
22 Hardy, G. H., Prolegomena to a chapter on inequalities. J. London Math. Soc. 4
(1929), 61–78.
23 Hardy, G. H., Littlewood, J. E. and Pólya, G. Inequalities. 2nd ed., Cambridge
University Press, 1952 (1934).
24 Heinig, H. P., Some extensions of Hardy’s inequality. SIAM J. Math. Anal. 6
(1975), 698–713.
25 Heinig, H. P., Kerman, R. and Krbec, M., Weighted exponential inequalities.
Georgian Math. J. 8 (2001), no. 1, 69–86.
26 Hörmander, L., The Analysis of Linear Partial Differential Operators I. 2nd ed.,
Springer Verlag, 1989 (1983).
27 Jain, P., Persson, L. E. and Wedestig, A., From Hardy to Carleman and general
mean-type inequalities. In: Function Spaces and Applications, Narosa Publishing
House (New Delhi), 2000, 117–130.
28 Jain, P., Persson, L. E. and Wedestig, A., Carleman-Knopp type inequalities via
Hardy inequalities. Math. Inequal. Appl. 4 (2001), no. 3, 343–355.
carleman.tex,v 1.10