182 Giorgio T. Bagni Normat 4/2005
Bagni, G. T. (2000b), “Simple” rules and general rules in some high school students’
mistakes, Journal für Mathematik Didaktik, 21, 2, 124–138.
Bagni, G. T. (2005), Infinite series from history to mathematics education, International
Journal for Mathematics Teaching and Learning,
http://www.ex.ac.uk/cimt/ijmtl/bagni.pdf.
Bagni, G. T. (forthcoming-a), Historical roots of limit notion. Development of its
representative registers and cognitive development, Canadian Journal of Science,
Mathematics and Technology Education.
Bagni, G. T. (forthcoming-b), Some cognitive difficulties related to the representations of
two major concepts of set theory, Educational Studies in Mathematics.
Bagni, G. T. & D’Amore, B. (2005), Epistemologia, sociologia, semiotica: la prospettiva
socio-culturale, La matematica e la sua didattica, 1, 73–89.
Barbin, E. (1994), Sur l a conception des savoirs géométriques dans les Éléments de
Géométrie, Gagatsis, A. (Ed.), Histoire et enseignement des Mathématiques: Cahiers de
didactique des Mathématiques, 14–15, 135–158.
Brousseau, G. (1983), Les obstacles épistémologiques et les probl èmes in mathématiques,
Reserches en Didactique des Mathématiques, 4, 2, 165–198.
Cantoral, R. & Farfán, R. (2004), Desarrollo conceptual del cálculo, Thomson, Mexico.
Chevallard, Y. (1985), La transposition didactique, du savoir savant au savoir enseigné,
La Penseé Sauvage, Grenoble.
Dauben, J. W. & Scriba, C. J. (2002), Writing the history of mathematics: its historical
development, Birkhäuser, Basel, Switzerland.
Duval, R. (1995), Sémiosis et pensée humaine. Registres sémiotiques et apprentissages
intellectuels, Peter Lang, Paris.
Edwards, C. H. Jr. (1994), The Historical Development of the Calculus, Springer, Berlin.
Fauvel, J. & van Maanen, J. (Eds.) (2000), History in Mathematics Education. The
ICMI Study, Dodrecht, Kluwer.
Furinghetti, F. & Radford, L. (2002), Historical conceptual developments and the
teaching of mathematics: from philogenesis and ontogenesis theory to classroom practice,
English, L. (Ed.), Handbook of International Research in Mathematics Education,
631–654, Lawrence Erlbaum, Hillsdale, New Jersey.
Grugnetti, L . & Rogers, L. (2000), Philosophical, multicultural and interdisciplinary
issues, Fauvel, J. & van Maanen, J. (Eds.), History in Mathematics Education. The
ICMI Study, 39–62, Dordrecht, Kluwer.
Hairer, E. & Wanner, G. (1996), Analysis by its history, Springer-Verlag, New York.
Heiede, T. (1996), History of mathematics and the Teacher. In Calinger, R. (Ed.), Vita
Mathematica. The Mathematical Association of America, 231–243.
Kline, M. (1972), Mathematical thought from ancient to modern times, Oxford Un.
Press, New York.
Lakoff, G. & Núñez, R. (2000), Where mathematics come from? How the embodied mind
brings mathematics into being, Basic Books, New York.
Leibniz, G. W. (1716), Epistola G. G. L. ad V. Clariss. Christianum Wolfium,
Professorem Matheseos Halensem, circa scientiam infiniti. Excerpta ex Actis
Eruditorum Lipsiensibus, t. V suppl., 183–188.
Leibniz, G. W. & Bernoulli, Jo. (1745), Commercium philosophicum et mathematicum,
Tomus primus. ab anno 1694 ad annum 1699. Tomus secundus, ab anno 1700 ad annum
1716. Lausanne-Généve, Bousquet.
Lizcano, E. (1993), Imaginario colectivo y creación matemática, Gedisa, Barcelona.
Loria, G. (1929–1933), Storia delle matematiche dall’alba delle civiltà al tramonto del
secolo XIX, Sten, Torino, Italy (reprint: Cisalpino-Goliardica, Milano 1982).