132 Christian Berg Normat 3/2006
hvor
=
1+
p
5
2
,q=
1
p
5
1+
p
5
. (34)
Tallet kaldes det gyldne snit.
Hvis derimod ↵ er ulige, er (F
↵
/F
↵+n
) ikke en momentfølge i den forstand vi
har diskuteret det her, men den er dog stadig momentfølge for udtrykket (33), som
i dette tilfælde er et reelt mål med total masse 1.
Litteratur
[1] N. I. Akhiezer, The classical moment problem. Oliver and Boyd, Edinburgh, 1965.
[2] W. A. Al-Salam, Characterization theorems for orthogonal polynomials, 1–24. In:
Orthogonal Polynomials: Theory and Practice. Ed. P. Nevai and M.E.H. Ismail.
Nato ASI Series C, Volume 294. Kluwer, Dordrecht 1990.
[3] S. Altmann, E.L. Ortiz, Editors, Mathematics and social utopias in France. Olinde
Rodrigues and His Times. History of Mathematics 28, American Mathematical
Society 2005.
[4] R. Askey, Ramanujan’s extension of the gamma and beta functions, Amer. Math.
Monthly 87 (1980), 346–359.
[5] G.E. Andrews, R. Askey and R. Roy, Special functions. Cambridge University
Press, Cambridge 1999.
[6] C. Berg, Indeterminate moment problems and the theory of entire functions, J.
Comput. Appl. Math. 65 (1995), 27–55.
[7] C. Berg, Fibonacci numbers and orthogonal polynomials. Udkommer i J. Comput.
Appl. Math.
[8] C. Berg, A. J. Durán, A transformation from Hausdorff to Stieltjes moment
sequences, Ark. Mat. 42 (2004), 239–257.
[9] C. Berg, A. J. Durán, Some transformations for Hausdorff moment sequences and
harmonic numbers, Canad. J. Math. 57 (2005), 941–960.
[10] C. Berg, A. J. Durán, The fix-point for a transformation of Hausdorff moment
sequences and iteration of a rational function. Manuskript.
[11] T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New
York-London-Paris, 1978.
[12] Man-Duen Choi, Tricks or Treats with the Hilbert Matrix, Amer. Math. Monthly 90
(1983), 301–312.
[13] G. van Dºk, Thomas Joannes Stieltjes: Honorary Doctor of Leiden University, The
Mathematical Intelligencer 16 no.1 (1994), Springer Verlag, New York.
[14] G. Gasper and M. Rahman, Basic hypergeometric series, Cambridge University
Press, Cambridge 1990, second edition 2004.
[15] D. Hilbert, Ein Beitrag zur Theorie des Legendreschen Polynoms, Acta Math. 18
(1894), 155–159. (367–370 in “Gesammelte Abhandlungen II”, Berlin 1933.)
[16] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable,
Cambridge University Press, Cambridge 2005.
[17] S. Kaºser, Några “nya” ortogonala polynom, Normat 47 (1999), 156–165.
[18] D. E. Knuth, The Art of Computer Programming. Vol. 1, 2nd Ed., Addison-Wesley,
1973