88 Trond Steihaug and D. G. Rogers Normat 2/2009
Hence, we see that turning points for Γ(θ) are also given by (7), as for ∆(θ), and
we can then verify that Γ(θ) attains a maximum at (3). But this working only
quickens our interest in having some more transparent explanation.
References
[1] S. M. Arnold, Online mathematics resources, available at
hhttp://www.compasstech.com.au/ARNOLD/maths.htmi.
[2] D. A. Cox, (a) Galois Theory (Wiley Interscience, Hoboken, NJ, 2004). MR2119052;
(b) with J. Shurman, Geometry and number theory on clovers, Amer. Math. Monthly,
112 (2005), 682–704. MR2167769; (c) Why Eisenstein proved the Eisenstein crite-
rion and why Schönemann discovered it first, Normat, 57 (2009), this issue.
[3] H. E. Dudeney, (a) Perplexities, The Strand Magazine, 58 (August, 1919), 200; (b)
Modern Puzzles and How to Solve Them (C. A. Pearson, London, 1926; 2nd ed.,
1936) (c) review of [3, (b)] by W. Hope-Jones, Math. Gaz., 13 (1927), 337–338.
[4] S. E. Ellermeyer, A closer look at the crease length problem, Math. Mag., 81 (2008),
138–145.
[5] T. J. Fletcher, Doing without calculus, Math. Gaz., 55 (1971), 4–17.
[6] M. Gardner, Mathematical Games: Origami, Scientific American, 201 (July 1959);
reprinted as Chap. 16 in M. Gardner, The Second Scientific American Book of Math-
ematical Puzzles and Diversions (Simon and Schuster, New York, NY, 1961), esp.
pp. 144–145; updated as Origami, Eleusis, and the Soma Cube. Martin Gardner’s
Mathematical Diversions. New Martin Gardner Mathematical Library (Cambridge
University Press, Cambridge, UK; Math. Assoc. Amer., Washington, DC, 2008).
MR2441570.
[7] G. Hatch, Note 80.40: Still more about the (20, 21, 29) triangle, Math. Gaz., 80
(1996), 548–550.
[8] K. Holing, På gjengrodde stiger I, Normat, 45 (1997), 62–78; II: tillegg og rettelser,
ibid, 46 (1998), 45; III: geometriske løsninger, ibid, 48 (2000), 83–90; IV: epilog,
ibid, 50 (2002), 92–95. MR1780823.
[9] R. B. Kirchner, The crease length problem revisited, Spring Meeting, MAA North
Central Section, 25 April, 2009; demonstrations available at
hhttp://public.me.com/rkirchne/CreaseLengthProblemi;
hhttp://demonstrations.wolfram.com/ExploringTheCreaseLengthProblemi
[10] P. J. Nahin, When Least Is Best: How mathematicians discovered many clever ways to
make things as small (or as large) as possible (Princeton University Press, Princeton,
NJ, 2004). MR2022170.
[11] B. Scimemi, Algebra og geometri ved hjelp av papirbretting, Normat, 46 (1998),
170–185, 188. MR1682447.