126 Andrew Percy and D. G. Rogers Normat 3/2009
References
[1] C. Alsina and R. B. Nelsen, (a) Math Made Visual: Creating Images for
Understanding Mathematics. Classroom Resource Materials Series (Math. Assoc.
Amer., Washington, DC, 2006), esp. pp. 31–32. MR2216733; (b) On the diagonals
of a cyclic quadrilateral, Forum Geometricorum, 7 (2007), 147–149. MR2373396;
(c) When Less is More: Visualising Basic Inequalities. Dolciani Math. Expositions
36, (Math. Assoc. Amer., Washington, DC, 2009). MR2498836.
[2] M. K. Azarian, Al-K¯ash¯ı’s Fundamental Theorem, Int. J. Pure Appl. Math., 14
(2004), 499–509. MR2072161.
[3] T. Andreescu and A. Andrica, Complex Numbers from A to . . . Z (Birkhäuser,
Basel, 2006), pp. 130–131. MR2168182; based on Numere complexe de la A la . . .
Z (Editura Millenium, Alba Iulia, Romania, 2001).
[4] G. van Brummelen, Jamsh¯ıd al-K¯ash¯ı: calculating genius, Mathematics in School,
27 (1998) No. 4, 40–44; extract reprinted in [17, pp. 130–135].
[5] H. S. M. Coxeter, Introduction to Geometry (John Wiley, New York, NY, 1961; 2nd
ed., 1969; repr., 1989). MR0123930, 0346644, 0990644.
[6] A. J. Crilly and C. R. Fletcher, Ptolemy’s Theorem, its parent and offspring, in
[17, pp. 42–49].
[7] C. V. Durell, (a) A Course of Plane Geometry for Advanced Students, Pts. 1, 2
(Macmillan, London, UK, Pt. 1, 1909; Pt. 2, 1910); Pt. 1 revised as (b) Modern
Geometry: the straight line and circle (Macmillan, London, UK, 1920), esp.
pp. 17–18.
[8] C. V. Durell and A. Robson, Advanced Trigonometry (G. Bell and Sons, London,
UK, 1939), esp. pp. 25, 27; available at hhttp://books.google.comi; preface
available at hhttp://turnbull.mcs.st-and.ac.uk/
~
history/Extrasi.
[9] F. Eriksson, (a) Fermat Torricellis problem – en klassisk skönhet i delvis ny dräkt,
Normat, 39 (1991), 64–75, 103. MR1130587; (b) The Fermat-Toricelli problem
once more, Math. Gaz., 81 (1997), 37–44; (c) Obituary notices, ibid, 84 (2000), 127.
[10] H. G. Forder, (a) A School Geometry (Cambridge University Press, Cambridge,
UK, 1930; 2nd ed., 1938), p. 132; (b) Higher Course Geometry: being Parts IV and
V of A School Geometry, (Cambridge University Press, Cambridge, UK, 1931; 2nd
ed., 1938), p. 240; (c) obituary notice by J. C. Butcher, Bull. London Math. Soc..
17 (2) (1985), 162–167.
[11] D. W. French, Van Schooten’s Theorem, in [17, pp. 184–186].
[12] C. Godfrey and A. W. Siddons, Modern Geometry (Cambridge University Press,
Cambridge, UK, 1908), esp. pp. 80–82; available at
hhttp://quod.lib.umich.edu/u/umhistmathi.
[13] J. E. Hofmann, (a) Elementare Lösung einer Minimumsaufgabe, Zeitschrift für
mathematischen und naturwissenschaftlichen unterricht, 60 (1929), 22–23; (b)
Frans van Schooten der Jüngere. Boethius, Texte und Abhandlungen zur Geschichte
der exakten Wissenschaften II (Franz Steiner, Wiesbaden, 1962). MR0164861; (c)
Pierre Fermat — ein Pionier der neuen Mathematik I, Praxis Math., 7 (1965),
113–119; II, ibid, 7 (1965), 171–180; III, ibid, 7 (1965), 197–203. MR0239913. (d)
Über die geometrische Behandlung einer Fermatschen Extremwert-Aufgabe durch
Italiener des 17. Jahrhunderts, Sudhoffs Archiv, 53 (1969), 86–99.