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1 Van Schooten’s Theorem (1646)

Frans van Schooten (1615–1660) was influential in the mathematical circle of his
time in several ways, but not least in the selection or formulation of choice re-
sults. In this regard, van Schooten acted as a significant conduit for the ideas of
contemporaries, notably René Descartes (1596–1650), but also Pierre de Fermat
(1601–1665), to reach a wider audience — Isaac Newton (1642–1727), for one, read
van Schooten’s work with close attention in the mid-1660s, drawing on it in his
Lucasian lectures at Cambridge in the decade from 1673 (compare [22, esp. (a),
n. 7, p. x]; another Dutch source for Newton was the algebra textbook of 1661 by
Gerard Kinckhuysen (1625–1666)).
One of van Schooten’s theorems, in his De Organica Conicarum Sectionum In
Plano Descriptione, Tractatus [19], of 1646, brings to light a curious property of
equilateral triangles (see also [14, (b)] and [11]). Let 4ABC be an equilateral
triangle. If P is a point on the arc AB of the circumcircle of 4ABC opposite C,
as in Figure 1(i), then van Schooten shows that

CP = AP +BP. (1)

The fact that APBC is a cyclic quadrilateral is something with which to set to
work. We might recall a staple in school geometry textbooks in years gone by (see,
for example, [12, 7, 8]; and compare [6]), the theorem of Ptolemy (c. 85–c. 165)
that once served as the foundation of trigonometric computation: the rectangle
contained by the diagonals of a cyclic quadrilateral is equal to the rectangles con-
tained by the pairs of opposite sides. So, for the cyclic quadrilateral APBC, we
have

AB.CP = BC.AP +AC.BP,

or, in the notation in Figure 1(i),

az = ax+ ay.
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Hence,
z = x+ y;

that is, (1) follows quickly as an easy exercise on Ptolemy’s Theorem. Thus, de-
pending on our prior knowledge, van Schooten’s Theorem might not detain us long.
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Figure 1: Van Schooten’s Theorem

However, recollecting the historical context, it is also curious to note how (1) is
suggested fairly readily in considering the geometry of a more celebrated problem,
the challenge issued by Fermat in the early 1640s to those who, like Descartes,
doubted his methods to find a point in a triangle that minimises the sum of the
distances to the vertices. The late Folke Eriksson (1927–1999) contributed an in-
formative and erudite account [9, (a)] on this subject to Normat in 1991 (see also
[14, (a)] and [1, (c) §6.2]). Drawing on this article or otherwise, it is known that
if P is the required point in the triangle 4ABC ′, as in Figure 2(i), then in the
first place the sides of the triangle subtend equal angles at P . But, secondly, as
a construction for P , if an equilateral triangle 4ABC is placed externally on the
edge AB of 4ABC ′, then P is the point in this triangle where the circumcircle of
4ABC intersects CC ′, as shown in Figure 2(ii). Moreover, the length of CC ′ is
the minimum sought by Fermat. Consequently, in the knowledge of this answer to
Fermat’s challenge, (1) follows immediately.
Van Schooten had been much closer personally to Descartes than to Fermat (com-
pare [15, pp. 58, 25, 67, 56]). Indeed, Descartes in conversation with van Schooten
had tended to put Fermat down, saying Fermat had discovered “many pretty, spe-
cial things” in contrast to Descartes’ own preference for general results with numer-
ous applications. On the other hand, Fermat had been mortified that his earlier
efforts went unmentioned when van Schooten issued a reconstruction of Apollo-
nius’ Plane Loci — van Schooten’s student, Christian Huygens (1629–1695), even
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expressed the view that much of Fermat’s restoration of this work was thin and
perfunctory. But van Schooten is also known to have collected copies of Fermat’s pa-
pers while in Paris. So, perhaps Fermat’s challenge had not escaped van Schooten’s
notice when he advanced (1).
Certainly, (1) has all the appearance of a “pretty, special thing” of the sort that
typified Fermat’s work according to Descartes. Yet, as we shall see, it also has an
aspect perhaps more satisfying to Descartes’ tastes. For, a simple proof of this par-
ticular case of Ptolemy’s Theorem pushes through, not only to establish Ptolemy’s
Theorem in full generality, but also to answering Fermat’s challenge. Thus, van
Schooten’s modest case in (1) is actually equivalent to these seemingly more mo-
mentous results.
Some indication of this alternative line of development is pieced together in a couple
of geometry textbooks [10] by Henry George Forder (1889–1981), at the start of the
1930s (the relevant passages are reproduced in Figure 7 by permission of the Forder
Estate). Forder’s approach has an affinity with the celebrated solution to Fermat’s
challenge to be found, for example, in [5, §1.8], but which had then appeared only
a little earlier in a note [13, (a)] by Joseph Ehrenfried Hofmann (1900–1973). Van
Schooten is mentioned neither by Forder nor in the current common reference [16,
(a) §§1.5–6] for the link between Ptolemy’s Theorem and Fermat’s challenge (a
fuller treatment of this link, including the equivalence of Fermat’s principle of least
time for light rays with Snell’s law of diffraction, appears in a subsequent book
[16, (b) §24] by the same author). However, Hofmann went on to write with great
authority on the mathematics of both Fermat [13, (c)] and van Schooten [13, (b)],
besides also returning more specifically to Fermat’s challenge in [13, (d)]
Hofmann’s demonstration might well go back further. For instance, Lothar Wolf-
gang von Schrutka, Edler von Rechtenstamm (1881–1945) presented something of
a prototype [20, (a)] in 1914. Of late, there has been renewed interest in a general-
isation of van Schooten’s theorem noted in 1936 by Dimitrie Pompeiu (1873–1954)
and to which we come in Section 5 (see, [3]; compare also [14, (c)] and [18]). But
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our starting point, in Section 2, is a recent variant of Forder’s observation that
appears in [11].
As it happens, the centenary volume [17] in which this note appears contains an
essay [6] on Ptolemy’s Theorem, although no connection is drawn between these
contributions. More curiously in this respect, the volume includes a brief account
[4] of a result of Ghiyath al-Din Jamsh̄ıd Mas’ud al-Kāsh̄ı (1390–1450) working at
the apogee of late Arabic astronomical computation. Yet, despite al-Kāsh̄ı’s result
being firmly in Ptolemy’s tradition of table making, it is neither presented nor
recognised as a special case of Ptolemy’s theorem, one indeed already anticipated
by Euclid (?325–?265) in a proposition towards the end of Data [21], as we no-
tice on re-encountering it in passing in Section 3. This fluctuating attention down
the centuries, here encapsulated within a single volume, is suggestive alike of the
workings of mathematical enquiry and of the historiography of mathematics.
Ptolemy presented his theorem on cyclic quadrilaterals in Almagest I.10. The in-
stances where a side or a diagonal is a diameter of the circumcircle were instrumen-
tal in trigonometric computations for astronomical purposes. The classical proof
in terms of similar triangles, touched on in Section 6, is rehearsed in such older
textbooks as [12, 7], and anew with greater attention to visual presentation in [1,
(a)]. But the Law of Cosines may be called in aid, as in [8], to develop algebraic
expressions for the squares of the diagonals in terms of the sides, expressions that
are themselves of considerable antiquity and from which Ptolemy’s Theorem is
an immediate consequence. This argument is turned around with the help of fur-
ther visual aids in [1, (b)] to deduce the result on the diagonals given Ptolemy’s
Theorem.

2 The equilateral triangle

Now, the equilateral triangle is sufficiently special as to invite further thought in
place of an appeal to another result, however well-known; perhaps ingenuity will
come to our aid, if knowledge is deficient. The introduction of P on the circumcircle
of 4ABC, cuts APBC into two pieces 4ACP and 4BCP that fit together along
CP . But, since the sides of 4ABC are equal, following [11], it looks as though
we can rotate the triangle 4ACP about C so that AC matches up with BC. As
suggested in Figure 1(ii), this seems to produce a new equilateral triangle 4PP ′C.
If so, then (1) will simply express the equality of the sides CP and PP ′ of this
triangle.
We can achieve the effect of rotation by cutting off the triangle4ACP from APBC
and juxtaposing a triangle 4BCP ′ congruent with it, thus conserving the angle
at C:

∠PCP ′ = ∠ACB = π/3.

Now, Elements III.22 tells us that the opposite angles of a cyclic quadrilateral add
to two right angles. In particular, then

∠CBP ′ + ∠CBP = ∠PAC + ∠CBP = π.
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So, this property in Figure 1(i) translates into the collinearity of P , B and P ′

in Figure 1(ii), ensuring that our surgery on the cyclic quadrilateral APBC does
result in a triangle, viz 4PP ′C. We also have equal angles abounding, in view of
Elements III.21, that angles subtended by a chord in the same arc of a circle are
equal, and the fact that 4ABC is equiangular:

∠P ′PC = ∠BPC = ∠BAC = π/3

and
∠PP ′C = ∠BP ′C = ∠APC = ∠ABC = π/3.

Hence, our new triangle 4PP ′C is indeed equiangular and so equilateral.
Thus, our sense that dissecting APBC into two pieces and interchanging them
relative to one another to form another equilateral triangle proves well-founded,
and we can push through to answer van Schooten’s question. Put another way, the
dissection demonstration verifies Ptolemy’s Theorem in the special case of a cyclic
quadrilateral APBC where 4ABC is equilateral.

3 The isosceles triangle

It is clear that, with results such as Ptolemy’s Theorem, or even Elements III.21
or III.22, we needs must know them in order to be in a position to use them;
knowledge is a common hurdle that everyone has to surmount. But what can be
a source of insight for one person can be an impediment to progress for another.
After all, acquaintance with, say, Ptolemy’s Theorem may not be lacking, but we
still have to have some intuition to employ it in a given instance — sometimes
knowing too much leaves us uncertain where to start.
What makes the dissection argument work so well with the equilateral triangle?
It is important to understand the mechanics involved, if our intuition is not to
become yet another stumbling block for those anxious about thinking through an
answer to van Schooten’s problem for themselves. Rather, approached in a spirit
of critical research, the dissection demonstration might perhaps serve as a building
block encouraging further investigation.
The crucial step in the dissection argument in the previous section is the initial one.
Once we are assured that the sides AC and BC of4ABC are equal, everything else
falls neatly into place, on account of standard results in circle geometry. But this
assessment means that the demonstration will also work when 4ABC is isosceles
with equal sides AC and BC and so with equal base angles ∠BAC and ∠ABC
(see Figure 2). For, the angle at C remains conserved; P , B and P ′ continue to be
collinear; and we still have plenty of equal angles:

∠P ′PC = ∠BPC = ∠BAC; ∠PP ′C = ∠BP ′C = ∠APC = ∠ABC. (2)

Since ∠ABC = ∠BAC, we also have ∠P ′PC = ∠PP ′C. The upshot is that the
transposition of the two pieces in our dissection produces another isosceles triangle
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Figure 3: Isosceles triangle

4PP ′C with equal sides PC and P ′C. Moreover, in view of (2), the base angles in
the isosceles triangle 4ABC are equal to the base angles in the isosceles triangle
4PP ′C, ensuring that these triangles are similar.
It follows that

AB : AC = PP ′ : PC; (3)

that is, in the notation of Figure 2,

c

a
= x+ y

z
. (4)

Hence,

cz = ax+ ay,

thereby verifying Ptolemy’s Theorem in the case of a cyclic quadrilateral APBC
in which 4ABC is isosceles with AC = BC.
We might note, as an instance of the isosceles case, the right kite, where in addition
CP is a diameter of the circumcircle of4ABC so that ∠CAP and ∠CBP are both
right angles. In this instance, we can also verify Ptolemy’s Theorem by computing
the area of the right kite in two ways, on the one hand because it consists of two
congruent right triangles and on the other because the diagonals are at right angles.
The isosceles case is, in fact, the historical curiosity to which we alluded in the
penultimate paragraph of Section 1. For, in one formulation, it predates Ptolemy’s
Theorem as such, having been given by Euclid in Data. But, in another, it reappears
much later as the “fundamental theorem” of al-Kāsh̄ı, as it is called in [2].



122 Andrew Percy and D. G. Rogers Normat 3/2009

4 The general triangle

This success encourages the further question: what happens if conditions are relaxed
completely and4ABC is an arbitrary triangle? There is no problem in carrying out
the surgery on APBC, deleting4ACP and adjoining a triangle4A′CP ′ congruent
with it so that A′C lies along BC (see Figure 3). But now there is no guarantee
that A′ will be coincident with B, as was, in effect, the case for equilateral and then
isosceles triangles. However, as before, the angle at C is conserved; and at least we
know that A′P ′ is parallel to PB, because opposite angles of a cyclic quadrilateral
add to two right angles. Thus, if we rescale 4A′CP ′ by a factor of a/b to produce
a similar triangle 4BCP ′′, then P , B and P ′′ will be collinear (see Figure 3(ii)).
With this extra step, we have once more created a new triangle, 4PP ′′C.
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Figure 4: Ptolemy’s Theorem

Now, the significant feature of 4PP ′′C is that it inherits the angles of 4ABC,
extending our findings in the special cases of equilateral triangles and then isosceles
triangles. Not only is the angle at C in the former the same as that in the latter
by construction, but also, corresponding to (2), we have

∠P ′′PC = ∠BPC = ∠BAC

and
∠PP ′′C = ∠BP ′′C = ∠A′P ′C = ∠APC = ∠ABC.

Thus, 4PP ′′C and 4ABC are similar, since the three angles of one are pairwise
equal to the three angles of the other.
In this more general case, instead of (3), we have

AB : AC = PP ′′ : PC.
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Adopting the notation of Figure 3, this gives

c

b
= (ax

b
+ y)/z,

which, rewritten as
cz = ax+ by, (5)

can then be recognised as a restatement of Ptolemy’s Theorem. So, at this point, our
discussion tips over, from an exploration of special cases, into an alternative proof of
Ptolemy’s Theorem, since now the cyclic quadrilateral APBC is perfectly general.
But had we known Ptolemy’s Theorem, and been content in that knowledge, we
might never have entered upon this different avenue of approach.

5 The general convex quadrilateral

Indeed, we now see that the only thing that goes wrong with the construction in
Figure 3 when the quadrilateral APBC is not necessarily cyclic is that P , B and
P ′′ need not be aligned. However, triangles ∆ABC and ∆PP ′C remain similar
since

∠ACB = ∠PCP ′′; AC : BC = PC : P ′′C, (6)

by construction. So our previous argument goes through except that, instead of
having PP ′′ explicitly, we must resort to the triangle inequality:

PP ′′ ≤ PB +BP ′′,

with equality if and only if P , B and P ′′ are collinear, that is, if and only if APBC
is a cyclic quadrilateral, as before. Hence, as an extension of Ptolemy’s Theorem,
(5) becomes an inequality:

cz ≤ ax+ by, (7)

with equality if and only if P lies on the arc AB of the circumcircle of ∆ABC
opposite C. It is exactly this extension that provides one approach among others
to answer Fermat’s challenge, as mentioned in Section 1. Since, as we saw there,
the solution to the challenge implies (1), we now see that we can also find our way
back from that solution to Ptolemy’s Theorem and this extension as an inequality.
Returning to Figure 1, it is now apparent that, if P is not on the circumcircle of
∆ABC, then P , B and P ′ are the vertices of a triangle with sides equal to x, y
and z. This triangle has sometimes been named after Pompeiu, in honour of his
work in the 1930s. So, putting the triangle PBP ′′ to work in the last step in our
argument generalises Pompeiu’s triangle into the bargain.
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6 The right triangle

Of course, Ptolemy’s Theorem contains within it Pythagoras’ Theorem that, for
a right triangle, the square on the hypotenuse is equal in area to the sum of the
squares on the legs, as can be seen by restricting the cyclic quadrilateral to be a
rectangle. On the other hand, the classical proof of Ptolemy’s Theorem procedes
rather as an outworking of Euclid’s demonstration of Elements VI.31 extending
Pythagoras’s Theorem from squares to similar figures, in particular similar trian-
gles, similarly situated on the edges of the right triangle, starting with the case
in Figure 5(i) where the cyclic quadrilateral APBC is a rectangle. In this case,
let L be the foot of the perpendicular from C onto AB. Then, following Euclid,
the triangles 4ACL and 4CBL are both similar to 4ABC and so respectively to
4PCB and 4CPA. From these pairings, we infer that

AL.CP = AC.BP, LB.CP = CB.AP,

which taken together yield

AB.CP = (AL+ LB).CP = AC.BP + CB.AP (8)
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Figure 5: From Pythagoras to Ptolemy

At this juncture, (8) is no more than a restatement of Pythagoras’ Theorem, as
opposite sides of the rectangle are equal, AB = CP , AC = BP , and so are the
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diagonals, BC = AP . The trick in turning (8) into Ptolmey’s Theorem is to allow
L to vary on AB so as to retain one pairing of the similar triangles, say, 4ACL
with 4PCB (suggested by the shading in Figure 5(ii)). For, this ensures that

∠BCL = ∠BCP + ∠PCL = ∠PCL+ ∠LCA = ∠PCA, (9)

while ∠CBL = ∠CPA by Elements III.21. Thus, 4CBL and 4CPA, having
pairwise equal angles, remain similar. Hence, we recapture (8) for the general
cyclic quadrilateral, and with it a motivated presentation of the classical proof
of Ptolemy’s theorem. In the spirit of our earlier argument using a single pivot
with scaling, each pair of similar triangles can be seen as a separate pivot with
scaling, although this might seem artificial without our motivation (in [1, (a)], the
argument precedes a separate treatment of Fermat’s point).
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Figure 6: From van Schooten to Pythagoras?

To cap this argument for a general convex quadrilateral after the manner of Section
5, we can take L so that4ACL and4PCB are similar (see Figure 5(iii)). We shall
still have, in addition to (9),

AC.PC = LC.BC.

This combination is enough to ensure that4CBL and4CPB are similar (compare
(6)). However, L is no longer restricted to lie on AB, so the triangle inequality turns
(8) into (7) (compare [1, §6.1]).
It is of further interest to see what becomes of our proof in Section 4 when APBC
is the rectangle in Figure 6(i). The result, shown in Figure 6(ii), is that 4PP ′′C
is a right triangle similar to 4ABC, with BC the altitude at C dividing 4PP ′′C
into two further similar right triangles. This arrangement of similar right triangles
returns us, in effect, to Elements VI.31 (compare Figure 5(i)). At least in theory,
we could start with the figure for VI.31 and imagine ourselves reversing the steps
to devise the alternative proof of Ptolemy’s Theorem by dissection and rescaling.
However, the right triangle seems a less plausible starting point for this than van
Schooten’s equilateral triangle, perhaps because it requires a greater sense of what
to do next at each stage. Some doors are trap doors.
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Figure 7 : Facsimiles from Henry Forder’s books School Geometry (1930) and Higher
Course Geometry (1931), reproduced by permission of the Forder Estate


