62 Gert Almkvist och Arne Meurman Normat 2/2010
[8] J.Guillera, Series de Ramanujan: Generalizaciones y conjeturas (Spanska), Thesis,
Zaragoza 2007.
[9] J.Guillera, Some binomial series obtained by the WZ-method, Adv. in Appl. Math.
29 (2002), 599-603.
[10] J.Guillera, Hemsida, http://personal.auna.com/guillera
[11] J.Guillera, A new Ramanujan-like series for 1/π
2
, arXiv, NT/1003.1915.
[12] J.Guillera, W.Zudilin, “Divergent” Ramanujan-type supercongruences, preprint
2010.
[13] E.Lehmer, On congruences involving Bernoulli numbers and the quotients of
Fermat and Wilson, Ann. of Math.,39 (1938) 350-360.
[14] E.Mortenson, A p-adic supercongruence conjecture of van Hamme, Proc. Amer.
Math. Soc. 136 (2008) 4321-4328.
[15] D.Zagier, A modified Bernoulli number, Neuw Archief voor Wiskunde, 16 (1998)
63-72.
[16] W.Zudilin, Quadratic transformations and Guillera’s formulae for 1/π
2
, Math.
Notes, 81 (2007) 297-301.
[17] W.Zudilin, More Ramanujan-type formula for 1/π
2
, Uspeki Mat. Nauk 62 (2007)
[18] W.Zudilin, Ramanujan-type formulae for 1/π : A second wind? in Modular forms
and string duality, Ed. N.Yui, H.Verrill, C.F.Doran, AMS, Providence 2008
[19] W.Zudilin, Ramanujan-type supercongruences, J.Number Theory, 129 (2009)
1848-1857.