Normat 1/2011 Ole Christensen og Mads Sielemann Jakobsen 43
[5] Christensen, O., Kim, R.Y.: On dual Gabor frame pairs generated by polynomials.
J. Fourier Anal. Appl. 16, 1–16 (2010)
[6] Daubechies, I.: Ten lectures on wavelets. SIAM, Philadelphia, 1992.
[7] Daubechies, I.: The wavelet tran sformat ion, time-frequency localization and signal
analysis. IEEE Trans. Inform. Theory 36 (1990), 961–1005.
[8] Feichtinger, H. G. and Strohmer, T. (eds.): Gabor Analysis and Algorithms: Theory
and Applications. Birkhäuser, Boston, 1998.
[9] Feichtinger, H. G. and Strohmer, T. (eds.): Advances in Gabor Analysis.
Birkhäuser, Boston, 2002.
[10] Gröchenig, K. H.: Foundations of time-frequency analysis. Birkhäuser, Boston,
2000.
[11] Hernandez, E. and Weiss, G.: Afirstcourseonwavelets. CRC Press, Boca Raton,
1996.
[12] Janssen, A.J.E.M.: The duality condition for Weyl-Heisenberg frames. In:
Feichtinger, H.G., Strohmer, T. (eds.) Gabor analysis: Theory and Applications,
Birkhäuser, Boston, 1998.
[13] Jakobsen, M.S.: Gabor frames in L
2
(R), DTU Fagprojekt, 2010.
[14] Laugesen, R.S.: Gabor dual spline windows. Appl. Comput. Harmon. Anal. 27,
180–194 (2009).
[15] Lyubarskii, Y.: Frames in the Bargmann space of entire functions. Adv. in Soviet
Math. 11 (1992), 167–180.
[16] Ron, A., Shen, Z.: Weyl-Heisenberg frames and Riesz bases in L
2
(R
d
). Duke Math.
J. 89, 237-282 (1997)
[17] Spiegel, M. R.: Mathematical Handbook of formulas and tables, McGraw-Hill, Inc.,
1993.
[18] Seip, K. and Wallsten, R.: Sampling and interpolation in the Bargmann-Fock space
II. J. Reine Angew. Math. 429 (1992), 107–113.
[19] Young, R.: An introduction to nonharmonic Fourier series. Academic Press, New
York, 1980 (revised first edition 2001).