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1 Introduction

Polynomial algebraic equations of low degrees in the context of their Galois groups
are discussed in many places. A very long time ago, the supervisor of my Master
Thesis, the great logician, professor Andrzej Mostowski urged me to write a text
concerning this topic in order to answer several questions from the students attend-
ing his class on Galois theory in which I was a teaching assistant. The idea was to
give a straightforward, simple and direct description suitable for undergraduates.
I eagerly accepted my first serious pedagogical mission. The text, far from perfect,
appeared in Polish in [B]. During the years which followed, I taught Galois theory
several times and very often was asked similar questions as during my first teaching
task. I often xeroxed a table summarizing all cases from my paper (correcting some
printing errors in it), but I couldn’t give a simple and easily accessible reference
explaining the results. Now there are many sources which could be recommended,
notably [C], and several others. But in spite of the fact that there exist di�erent
presentations of this topic, it seems that there are many people who are in one way
or another dissatisfied with the existing texts. So here is one more with the hope
that simplicity of the formulations and arguments will give a useful pedagogical
reference.

We intend to work over an arbitrary field K of characteristic 0, but one can think
of K as any number field1, e.g. the field of rational numbers Q. We shall study
particular polynomial equations f(x) = 0 with coe�cients in K. The set of all such
polynomials f(x) will be denoted, as usual, by K[x].

Let f(x) œ K[x] be a polynomial of degree n and let –1, –2, . . . , –n denote the
solutions of the equation f(x) = 0 in a field containing the field K. If the polynomial
has number coe�cients, we can take the complex numbers as such a field containing
K. However, if K is an arbitrary field, we can fix a field K containing K in which

1The results are exactly the same when K is an arbitrary field whose characteristic is neither
2 or 3, but one has to be a little more cautious with formulations assuming only this.



Normat 3-4/2011 Juliusz BrzeziÒski 99

every polynomial over K can be factorized into a product of linear factors, that is,
for every polynomial f(x) of degree n with coe�cients in K, there exist –1, . . . , –n œ
K such that f(x) = a(x ≠ –1) · · · (x ≠ –n), where a œ K. For a proof of existence
of such a field, see [L], p. 231.

The splitting field of a polynomial f(x) over K is the field K(–1, –2, . . . , –n),
which is the least set obtained from the elements of K and the solutions –1, –2, . . . , –n

of f(x) = 0 in K by means of the four arithmetical operations (addition, subtrac-
tion, multiplication and division). Sometimes, this field will be denoted by Kf .

Solving the polynomial equations or describing their Galois groups over a field K,
we shall often assume that the polynomials (of degree at least 2), which we discuss,
are irreducible, that is, can not be represented as a product of two nonconstant
polynomials of lower degrees with coe�cients in K. In practice, it is a natural
assumption if we know how to handle the polynomials of degrees lower than the
degree of f(x), since a nonconstant reducible polynomial is a product of two poly-
nomials of lower degrees. The simplest possibility is that f(x) has a zero – œ K.
Then, of course, f(x) = (x ≠ –)f1(x), where f1(x) œ K[x] has the degree one lower
than the degree of f(x). A polynomial is called separable if its zeros are di�erent.
We shall always assume that irreducible polynomials have this property. This is the
case over the fields of characteristic 0 (like the number fields) and over the finite
fields.

If f(x) œ K[x] is a polynomial with coe�cients in K, then its Galois group (one
may say, the Galois group of the equation f(x) = 0) is the automorphism group
of the splitting field Kf over K. This group will be denoted by G(Kf /K). If
‡ œ G(Kf /K), then

‡(– + —) = ‡(–) + ‡(—), ‡(–—) = ‡(–)‡(—) and ‡(a) = a

for any –, — œ Kf and a œ K. Hence ‡(g(–)) = g(‡(–)) for every polynomial
g œ K[x] and every – œ Kf . In particular, we have ‡(f(–i)) = f(‡(–i)) = 0 for
i = 1, 2, . . . , n, so ‡(–i) is also a solution of the equation f(x) = 0 (notice that
‡(0) = 0). Therefore, an automorphism ‡ gives a permutation of the zeros –i of
f(x) = 0. Such a permutation defines uniquely the e�ect of ‡ on all the elements of
Kf . When we have fixed a numbering of the zeros of f(x), then every automorphism
‡ gives a permutation: to ‡(–i) = –‡(i) corresponds the permutation mapping i

onto ‡(i) for i = 1, 2, . . . , n. Usually, we shall identify the permutation of the –i

with the permutation of their indices i and we shall consider the corresponding
permutation group as the Galois group of the polynomial f(x). One of the main
results of Galois theory is a one-to-one correspondence between the subgroups of the
Galois group G(Kf /K) and the subfields of Kf containing K: If H is a subgroup of
G(Kf /K) then the corresponding subfield consists of all – œ Kf for which ‡(–) =
– for each ‡ œ H. Conversely, to a subfield L of Kf containing K corresponds the
subgroup consisting of all ‡ œ G(Kf /K) for which ‡(–) = – for each – œ L (the
Galois group G(Kf /L)).

As a permutation group, the Galois group G(Kf /K) of a polynomial f(x) of degree
n is a subgroup of the symmetric group Sn consisting of all permutations of the
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numbers 1, 2, . . . , n. As we know, the group Sn has n! elements. For every particular
polynomial f(x) of degree n, we get a particular subgroup of Sn. A description
of these subgroups for arbitrary polynomials is not easy (and in full generality,
probably, impossible), but for polynomials of law degrees, in particular, for cubic
and quartic polynomials, the task is not too di�cult and its solution is the main
purpose of this text. Of course, it is necessary to identify di�erent subgroups of S3
and S4 in order to identify di�erent cases. Such a discussion of S3 and S4 is given
in the Appendix.

Let f(x) be a polynomial of degree n over K with splitting field Kf . Let –1, –2, . . . , –n

be all zeros of f(x) in Kf . The discriminant of f(x) is defined as the product

(1) �(f) =
Ÿ

1Æi<jÆn

(–i ≠ –j)2
.

Rudimentary Galois theory says that an element of the splitting field Kf belongs
to K if and only if it is fixed by all automorphism belonging to the Galois group
G(Kf /K). Therefore �(f) must be in K, since, evidently, it is fixed by all possible
permutations of –i, i = 1, 2, . . . , n. In fact, it is always possible to express the
discriminant as a polynomial of the coe�cients of f(x) (see below such formulae
for polynomials of degrees Æ 4 and the comments on checking their validity in the
next section – see 2.1).

After these introductory remarks, we look at the cases, which we want to discuss
– the cubic and quartic polynomials.

A general cubic polynomial can be written in the form a3x
3 + a2x

2 + a1x + a0,
where ai œ K and a3 ”= 0. Dividing by a3, we get a polynomial with the same zeros,
so we can always assume that a3 = 1. It is also very easy to achieve a2 = 0. In fact,
if already a3 = 1, we can always choose y, such that x = y ≠ a2

3 . Substituting this
x gives an equation in which the coe�cient of y

2 is 0. Thus, we shall only consider
cubic equations:

f(x) = x
3 + px + q = 0,(2)

with p, q œ K. How to solve arbitrary cubic equations in general case is presented
in Section 2 (see 2.11). If the given cubic polynomial f(x) is reducible, that is, it
can be factorized as a product of a linear and a quadratic factor over K, then it
is easy to solve the equation f(x) = 0 and to find the Galois group G(Kf /K). We
discuss in Section 2 (see 2.4) how to decide whether f(x) is reducible or not. Now
we describe the Galois groups of irreducible cubic polynomials. They are subgroups
of the permutation group S3 of all permutations of its 3 zeros and are given in the
following simple way (for a proof see 2.11 and 2.1 for the discriminant formula):

Theorem 1.1. Let f(x) = x
3 + px + q œ K[x] be an irreducible polynomial of

degree 3 and let � = �(f) = ≠4p
3 ≠ 27q

2. Then
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G(Kf /K) =
;

S3 when
Ô

� ”œ K,

A3 when

Ô
� œ K.

A general quartic equation has a shape a4x
4 + a3x

3 + a2x
2 + a1x + a0 = 0, where

ai œ K and a0 ”= 0. As for the cubics, we may divide by a4 and assuming a4 = 1,
we achieve a3 = 0 substituting this time x = y ≠ a3

4 . This gives an equation in
which the coe�cient of y

3 is 0. Thus, we shall only consider equations:

f(x) = x
4 + px

2 + qx + r = 0,(3)

with p, q, r œ K.

How to solve a general quartic equation, we discuss in 2.12. Studying the Galois
group in this case, like in the case of cubics, first of all we would like to know
whether the equation has a solution in K. If so, then we essentially have to handle
a cubic equation when we want to solve (3) or to determine its Galois group, since
f(x) is then a product of a linear and a cubic factor over K. For a discussion how
to decide whether f(x) = 0 has a solution in K see 2.4.

Thus, in principle, the problem is reduced to the case when a quartic polynomial
does not have zeros in K, so it can not be factored as a product of a first degree
polynomial and a cubic polynomial. But it may be possible to factor f(x) as a
product of two quadratic polynomials. In fact, studying possibility to factorize a
quartic polynomial as a product of two quadratic polynomials is not only a key to
a solution of the equation f(x) = 0, but also to the description of its Galois group.
So let us consider a factorization

(4) x
4 + px

2 + qx + r = (x2 + ax + b)(x2 + a
Õ
x + b

Õ),

where a, b, a
Õ
, b

Õ may belong to a field containing K. Compering the coe�cient for
x

3 to the right and to the left, we see immediately that a + a
Õ = 0, so a

Õ = ≠a.
Then compering the remaining coe�cients, we get the system

b + b
Õ = a

2 + p,

a(bÕ ≠ b) = q,(5)
bb

Õ = r.

Multiply the first equation by a, then square the first two equations and finally
subtract the second from the first! We get

4a
2
bb

Õ = a
2(a2 + p)2 ≠ q

2
.
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Replacing bb
Õ from the last equation gives our final result:

a
6 + 2pa

4 + (p2 ≠ 4r)a2 ≠ q
2 = 0.

The polynomial

(6) r(f)(t) = t
3 + 2pt

2 + (p2 ≠ 4r)t ≠ q
2

is called the resolvent of f(x). One of its zeros is t = a
2. In general, the resolvent

is responsible for the possibility to split f(x) into a product of two quadratic
polynomials. We can formulate this as follows in a special case when we urge that
the factorization is already over K:

Proposition 1.1. Let f(x) = x
4 +px

2 +qx+r be a polynomial with coe�cients in
a field K without zeros in K. Then f is reducible in K (a product of two quadratic
polynomials with coe�cients in K) if and only if
(a) q ”= 0 and the resolvent r(f) has a zero, which is a square in K,
or
(b) q = 0 and the resolvent r(f) has two zeros, which are squares in K or ” = p

2≠4r

is a square in K.

For a proof see 2.5.

Remark 1.1. Notice that the case (b) is concerned with the biquadratic polyno-
mials. Notice also that q = 0 if and only if the resolvent r(f)(t) = t

3 + 2pt
2 + (p2 ≠

4r)t ≠ q
2 of f(x) = x

4 + px
2 + qx + r = 0 has a zero t = 0.

Once we know that the polynomial f(x) is reducible (but without zeros in K), we
can easily describe its Galois group (see 2.9):

Theorem 1.2. Let f(x) = x
4 + px

2 + qx + r be reducible in K but without zeros
in K. Then

G(KF /K) =
;

V4 when r(f) has only one zero in K,

C2 when r(f) has all its zeros in K.

The Galois group of an irreducible quartic is given in the following way (for a proof
see 2.8 and 2.1 for the discriminant formula):

Theorem 1.3. Let K be a field and f(x) = x
4 +px

2 +qx+r œ K[x] an irreducible
polynomial. Let

r(f)(t) = t
3 + 2pt

2 + (p2 ≠ 4r)t ≠ q
2
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be the resolvent of f and

� = �(f) = �(r(f)) = ≠4p
3
q

2 ≠ 27q
4 + 16p

4
r ≠ 128p

2
r

2 + 144pq
2
r + 256r

3

its discriminant. Let ” = p
2 ≠ 4r. Then:

G(KF /K) =

Y
_________]

_________[

S4 when r(f) does not have zeros in K and
Ô

� ”œ K,

A4 when r(f) does not have zeros in K and
Ô

� œ K,

D4 when r(f) has only one zero — œ K and


—� ”œ K

if — ”= 0 or
Ô

”� ”œ K if — = 0,

C4 when r(f) has only one zero — œ K and


—� œ K

if — ”= 0 or
Ô

”� œ K if — = 0,

V4 when r(f) has all its zeros in K.

Example. Let us find the Galois group of the polynomial f(x) = x
4 + 4x ≠ 1

over the rational numbers. Is the polynomial f(x) reducible or irreducible over Q?
First we test possibility that f(x) has a rational zero. According to 2.4, we look
at the divisors of 1 (that is, ±1) and check that f(±1) ”= 0. Thus f(x) can not be
factored as a product of rational polynomials of degrees 1 and 3. Then we want to
test possibility that f(x) is a product of two quadratic polynomials. According to
2.5, we look at the resolvent r(f)(x) = x

3 + 4x ≠ 16. Testing the divisors of 16,
we find that — = 2 is the only rational zero of the resolvent and ≠1 ± i

Ô
7 are the

remaining two. Thus, we know that the polynomial f(x) is irreducible according
to 2.5, since

Ô
— ”œ Q. Now, we can use Theorem 1.3, which says that the Galois

group depends on the product —�, where � = ≠7168. Of course,


—� ”œ Q, so
the Galois group of f(x) is D4. 2

2 Proofs
2.1 How to compute the discriminant?

The discriminant of a polynomial f(x) with coe�cients in K whose all zeros are
–1, . . . , –n (in some field K containing K) was defined as

(7) �(f) =
Ÿ

1Æi<jÆn

(–i ≠ –j)2
.

If f(x) = x
2 + px + q, then

�(f) = (–1 ≠ –2)2 = (–1 + –2)2 ≠ 4–1–2 = p
2 ≠ 4q,
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since –1 + –2 == ≠p and –1–2 = q.

If f(x) = x
3 +px+q, then similar, but much more complicated, computations show

that

�(f) = (–1 ≠ –2)2(–2 ≠ –3)2(–3 ≠ –1)2 = ≠4p
3 ≠ 27q

2

taking into account the Vietâ formulae –1 + –2 + –3 = 0, –1–2 + –2–3 + –3–1 = p,
–1–2–3 = ≠q.

Still more complicated is a computation showing that for f(x) = x
4 + px

2 + qx + r,

�(f) =
Ÿ

1Æi<jÆ4
(–i ≠ –j)2 = ≠4p

3
q

2 ≠ 27q
4 + 16p

4
r ≠ 128p

2
r

2 + 144pq
2
r + 256r

3
.

A detailed computation in the case of cubic equations can be found in [N], p. 188.
More general considerations and formulae, which explain very well the notion of
discriminant and a method, which gives a possibility to express it by means of the
coe�cients of the equation, can be found in [T], pp. 167–170. Today, it is easy
to use di�erent symbolic computer packages like Maple, Pari or Mathematica in
order to get these formulae and compute discriminants of many other interesting
polynomials. However, those given above is all what we need in order to find Galois
groups in particular cases and we only need the definition of the discriminant
together with its fundamental property in Proposition 2.1 in order to prove all
results on Galois groups in this text.

2.2 What is the role of the discriminant?

First of all, the discriminant of a polynomial tells us whether its zeros are di�erent.
This follows from the very definition (7), which easily implies that �(f) ”= 0 if and
only if all the zeros of f(x) are di�erent. The following property of the discriminant
is very important in applications related the the study of the Galois groups of
polynomials:

Proposition 2.1. Let � = �(f) be the discriminant of the polynomial f(x). ThenÔ
� œ K if and only if all permutations in G(Kf /K) are even.

Proof. By the definition (7), we have
Ô

� œ Kf . If there is an odd permutation in
the Galois group G(Kf /K), then it acts on

Ô
� œ Kf by the change of its sign, soÔ

� can not be in K. If all permutations in the Galois group G(Kf /K) are even,
then

Ô
� œ Kf is mapped on itself by all o� them. Hence, we have

Ô
� œ K.

2.3 The resolvent of a quartic – some properties

Lemma 2.1. If –1, –2, –3, –4 are all the zeros of a quartic polynomial f(x) (in a
field K ´ K), then —1 = (–1 + –4)2

, —2 = (–2 + –4)2
, —3 = (–3 + –4)2 are all the

zeros of its resolvent.
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Proof. As we noted before, depending on the choice of the factorization (4), the
zeros of the first factor can be taken as –1, –4 or –2, –4 or –3, –4. Hence a =
≠(–i +–4) for i = 1, 2, 3 and the corresponding zero a

2 of r(f) is one of the —i.

Notice that the relation –1 + –2 + –3 + –4 = 0 shows that the particular role of –4
in the notations is not essential – the numbers —i do not change if we replace –4
by any other solution of f(x) = 0.
Lemma 2.2. The discriminants of the polynomials f and r(f) are equal. In par-
ticular, if a quartic polynomial f(x) is separable, then its resolvent r(f)(x) is also
separable.

Proof. With the notations as in Lemma 2.1, we have

�(r(f)) = (—1 ≠ —2)2(—2 ≠ —3)2(—3 ≠ —1)2 =

(–1 ≠ –2)2(–1 ≠ –4)2(–2 ≠ –3)2(–2 ≠ –4)2(–3 ≠ –1)2(–3 ≠ –4)2 = �(f).

Thus �(r(f)) ”= 0 if and only if �(f) ”= 0, that is, all –i are di�erent if and only
if all —i have this property.

2.4 How to decide that a cubic or a quartic has a linear factor?

A cubic polynomial f(x) = x
3 + px + q is reducible over a field K if and only if

it has a linear factor over K. Thus reducibility means that the polynomial has a
zero in K. Observe that this is not the case for polynomials of higher degree than
3. For example, f(x) = x

4 + 4 does not have real zeros, but x
4 + 4 = (x2 ≠ 2x +

2)(x2 + 2x + 2), that is, the polynomial is reducible over R as well over Q.

If we have a polynomial with coe�cients in an arbitrary field K, we do not have a
general method by which we could decide whether or not the equation f(x) = 0 has
a solution in K. The situation is somewhat easier when we have a polynomial with
rational coe�cients (which already gives a possibility to exemplify many results
concerning Galois groups in a non-trivial way). Usually one uses an elementary
result saying that if f(x) is a polynomial with integer coe�cients and a rational
number – = a/b, where a, b are relatively prime integers, is a solution of the
equation f(x) = 0, then a divides f(0) and b divides the highest coe�cient of
f(x). We omit an easy proof. Thus rational solutions must be integer if the highest
coe�cient is 1 and all divide f(0) (the “variable-free" term of f(x)). It is still a
serious numerical problem to find all the divisors of the integer f(0) (if it is big),
but there is a lot of good “pedagogical" examples of Galois groups when finding
the divisors of f(0) does not create any problem.

2.5 How to decide that a quartic is reducible?

Proposition 2.1 answers this question as regards factorization into a product of two
quadratic polynomials (the possibility of factorization as a product of a linear and
a cubic polynomial is discussed above in 2.4). For convenience, we recall:



106 Juliusz BrzeziÒski Normat 3-4/2011

Proposition 2.1. Let f(x) = x
4 +px

2 +qx+r be a polynomial with coe�cients in
a field K without zeros in K. Then f is reducible in K (a product of two quadratic
polynomials with coe�cients in K) if and only if
(a) q ”= 0 and the resolvent r(f) has a zero, which is a square in K,
or
(b) q = 0 and the resolvent r(f) has two zeros, which are squares in K or ” = p

2≠4r

is a square in K.

Proof. If f has no zeros in K and is reducible, then it must be a product of two
quadratic polynomials as in (4). The computations leading from (4) to (6) clearly
show that t = a

2 is a zero of the resolvent r(f), that is, the resolvent has a zero
which is a square in K.

If q ”= 0 and the resolvent has a zero t = a
2, a œ K, then a ”= 0. Using the system

(5), we find b, b
Õ œ K and, consequently, a factorization of f(x) as a product of two

quadratic polynomials. This completes our proof of the first case (a).

In the case (b), if there is a factorization with a = 0 (of course, a square in K – the
first zero of the resolvent, which is a square in K), then the quadratic polynomial
t
2 + pt + r has zeros in K, namely, ≠b, ≠b

Õ
, so ” = p

2 ≠ 4r must be a square in K.
Conversely, if ” is a square in K, then this quadratic polynomial has some zeros
≠b, ≠b

Õ and we get a factorization of f(x) with a = 0.

If in the case (b), we have a factorization with a ”= 0, then t = a
2 is a second zero of

the resolvent, which is a square in K. Conversely, assume that the resolvent r(f) has
two zeros which are squares in K (these two may be equal to 0). We find easily that
the zeros of r(f)(t) = t

3+2pt
2+(p2≠4r)t are: —1 = 0, —2 = ≠p+2

Ô
r, —3 = ≠p≠2

Ô
r

(observe that
Ô

r œ K). Of course, 0 is one of the squares. If the second is —2, we
easily check that we get a factorization of f(x) in K[x] noting that:

f(x) = x
4 + px

2 + r = (x2 +
Ô

r)2 ≠ —2x
2

and similarly for —3, when —3 is a square in K.

We note as a corollary an observation made in the last part of the proof:

Corollary 2.1. If f(x) = x
4 + px

2 + r, then 0 is always one of the zeros of the
resolvent r(f) and all three zeros of r(f) are in K if and only if Ô

r œ K. Moreover,
the discriminant of f(x) (and r(f)(t)) is

�(f) = 16r(p2 ≠ 4r)2
,

so K(
Ô

�) = K(
Ô

r).

Proof. Use the general formulae on �(f) from Theorem 1.3 in the case, when
q = 0.
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2.6 How to describe the splitting field of a quartic?

The following description of a relation between the splitting field of a quartic poly-
nomial and the splitting field of its resolvent is the core of the presentation in this
text. Denote, as before, the solutions of the equation f(x) = x

4+px
2+qx+r = 0 by

–1, –2, –3, –4, and the solutions of the resolvent r(f)(t) = t
3+2pt

2+(p2≠4r)t≠q
2 =

0 given by Lemma 2.1, by —1, —2, —3 (in some field K containing K). Then the split-
ting fields of these two polynomials are related in the following way:

Theorem 2.1. The splitting field Kf over K of a quartic separable polynomial
f(x) œ K[x] can be obtained from the splitting field Kr(f) of its resolvent r(f) over
K by adjunction of one arbitrary solution of the equation f(x) = 0, that is,

Kf = K(–1, –2, –3, –4) = Kr(f)(–i),

where i = 1, 2, 3, 4.

Proof. It is clear that

Kr(f)(–i) = K(—1, —2, —3, –i) ™ K(–1, –2, –3, –4) = Kf .

In order to prove the converse inclusion, choose i = 4 and consider the equations:

fi(x) = (x + –4)2 ≠ —i

for i = 1, 2, 3. This quadratic polynomial has its coe�cients in the field Kr(f)(–4).
Assume that fi(x) is irreducible in this field. By Lemma 2.1, it has a zero x = –i,
which is a zero of the polynomial f(x). Hence fi(x) divides f(x) (as an irreducible
polynomial having a common zero). Thus one more of the numbers –1, –2, –3, –4
di�erent from –i is a zero of fi(x), say, –j , where j ”= i. Then

fi(–i) = fi(–j) = 0,

that is,
(–i + –4)2 = (–j + –4)2

for j ”= i, which says that —i = —j – a contradiction according to Lemma 2.2.
Thus the polynomial is reducible in the field Kr(f)(–4) and its zero –i belongs
it. This holds for i = 1, 2, 3 (and, of course, also for i = 4) and shows that also
Kf ™ Kr(f)(–4). Together with the converse inclusion, we get Kf = Kr(f)(–4).
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2.7 Proof of Theorem 1.1: Galois groups of irreducible cubics

Proof. Since f(x) is irreducible, the Galois group is a transitive subgroup of the
symmetric group S3, that is, it is either A3 or S3 (see Appendix). Hence, the split-
ting field Kf has degree either 3 or 6 over K. The square root of the discriminantÔ

� is a non-zero element of Kf , since the polynomial f(x) has di�erent zeros.

If
Ô

� œ K, then the Galois group must consist of even permutations, since odd
permutations change the sign of

Ô
�. Hence, G(Kf /K) = A3 and Kf = K(–i) for

any zero –i, i = 1, 2, 3, of f(x).

If
Ô

� ”œ K, then the Galois group must consist of both even and odd permutations
(see Proposition 2.1). Hence the Galois group must be S3 and the degree of Kf

over K is 6.

Notice that in the second case above, the extension K(
Ô

�) has degree 2 over K

and Kf = K(
Ô

�, –i) for any zero –i, i = 1, 2, 3, of f(x). In fact, the polynomial
f(x) is still irreducible over K(

Ô
�) (as the degree of this field over K is 2 and

the degree of the irreducible over K polynomial f(x) is 3 – see 2.10), so the degree
of Kf = K(

Ô
�, –i) over K(

Ô
�) is 3. Hence, we have the following analogue of

Theorem 2.1:

Corollary 2.2. If f(x) œ K[x] is an irreducible polynomial of degree 3, then Kf =
K(

Ô
�, –i), where –i, i = 1, 2, 3 is any zero of f(x).

2.8 Proof of Theorem 1.3: Galois groups of irreducible quartics

Proof. We consider 3 cases:

Case 1: The resolvent r(f) has not zeros in K.

This means that r(f) is an irreducible cubic over K. According to Theorem 1.1,
the splitting field Kr(f) has degree 3 or 6 over K depending on the discriminant
� = �(r(f)) = �(f): the first case when

Ô
� œ K, and the second, when

Ô
� ”œ K.

If
Ô

� œ K (so the degree of Kr(f) over K is 3), then the polynomial f(x) of degree 4
is still irreducible over Kr(f) (see 2.10). Hence the splitting field Kf = K(

Ô
�, –1),

where –1 is any zero of f(x) (see 2.6), has degree 4 over Kr(f). Thus the degree of
Kf over K equals 12, which means that the Galois group G(Kf /K) is a subgroup
of order 12 of S4. There is only one such subgroup (see the Appendix) and it is the
alternating group A4 of all even permutations of 1, 2, 3, 4.

If
Ô

� ”œ K, then the Galois group G(Kf /K) must contain both even and odd
permutations according to Proposition 2.1 and its order is divisible by 6, since the
splitting field Kf over K contains a subfield Kr(f) of degree 6 over K. Moreover,
the Galois group is transitive, since f(x) is irreducible over K. There is only one
such subgroup of S4 and it is S4 itself (see the Appendix concerning the claim that
S4 is the only transitive subgroup of S4 of order divisible by 6).

Case 2: The resolvent r(f) has exactly one zero — = —1 = (–1 + –4)2 in K.
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First of all, let us notice that in this case, we have
Ô

� ”œ K. In fact, the splitting
field of the resolvent Kr(f) = K(

Ô
�, —) = K(

Ô
�) must be bigger than K, since

otherwise all the zeros of the resolvent are in K. Thus
Ô

� can not belong K, so the
Galois group G(Kf /K) must contain both even and odd permutations according
to Proposition 2.1.

Which permutations of the zeros –1, –2, –3, –4 of f(x) = 0 may belong to G(Kf /K)?
Since — = —1 = (–1 + –4)2 is in K, the permutations in G(Kf /K) must fix this
element. We see immediately that such permutations are all in the group:

D4 = V4 fi {(1, 2, 4, 3), (1, 3, 4, 2), (1, 4), (2, 3)},

where

V4 = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}

(remember that –1 + –4 = ≠(–2 + –3) and see the Appendix concerning the nota-
tions).

All other permutations in S4 map — = —1 on di�erent elements since (1, 2) maps
—1 = (–1 + –4)2 onto —2 and (1, 3) onto —3. Thus the 16 products in the cosets
(1, 2)D4 and (1, 3)D4 are di�erent and map —1 onto either —2 or —3.

Assume now that —1 ”= 0, so K(
Ô

—) = K(–1 + –4) is a quadratic extensions of K.
Since the polynomial f(x) is irreducible, the Galois group G(Kf /K) must contain
at least 4 elements. As a subgroup of D4 it must consist of 4 or 8 permutations in
D4. The group D4 is the square group and contains 3 subgroups of order 4 (see
the Appendix on the group S4 and its subgroups). Assume that G(Kf /K) has 4
elements. It can not be the subgroup V4, since it only has even permutations all
fixing

Ô
�, which however is not in K. It can not be

V
Õ

4 = {(1), (1, 4), (2, 3), (1, 4)(2, 3)},

(see the Appendix for the notations), since this group has –1 + –4 as fixed element
and this is also an element not in K. Thus G(Kf /K) must be the third group:

C4 = {(1), (1, 2, 4, 3), (1, 3, 4, 2), (1, 4)(2, 3)},

which is cyclic. But this group only has one subgroup of order 2, so the quadratic
fields K(

Ô
�) and K(

Ô
—) (over K) must be equal, that is,


—� œ K. If these

two fields are di�erent, that is,


—� ”œ K, it remains the only possibility that the
Galois group has order 8 and consists of all permutations in D4.

It may happen that — = 0, that is, –1 + –4 = 0 (and, consequently, –2 + –3 = 0).
As we noted before (see Remark 1), it happens if and only if the polynomial f(x) is
biquadratic (that is, q = 0). Then we have to find another field extension instead of
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K(
Ô

—), since now K(
Ô

—) = K. We take instead K(
Ô

”), since f(x) is irreducible,
so

Ô
” ”œ K. Notice that

” = p
2 ≠ 4r = (–2

1 ≠ –
2
2)2

(take into account that –4 = ≠–1 and –3 = ≠–2, so p = ≠(–2
1 +–

2
2) and r = –

2
1–

2
2).

The arguments are similar as in the previous case. As before, the first two groups
with 4 elements are impossible, since the first fixes

Ô
� and the other one,

Ô
” =

–
2
1 ≠ –

2
2 (this should be checked case by case taking into account the equalities

–4 = ≠–1 and –3 = ≠–2). Thus, if the Galois group G(Kf /K) has order 4, it
must be cyclic. But in this case, the fields K(

Ô
�) and K(

Ô
”) must be equal, soÔ

”� œ K. Otherwise, if they are not equal, that is,
Ô

”� ”œ K, then the Galois
group has order 8 and contains all permutations in the square group (in this case,
D4 above).

Case 3: The resolvent has all three zeros in K. Since now Kr(f) = K, the splitting
field Kf = K(–), where – is any zero of f(x) according to Theorem 2.1. Since f(x)
is irreducible, this field has degree 4 over K. Since all —i = (–i + –4)2 are in K,
they are fixed by the four permutations in V4, which is the Galois group G(Kf /K)
in this case.

2.9 How to find Galois groups of reducible quartics?

Once we know that the polynomial f(x) is reducible (but without zeros in K), we
can easily describe its Galois group:

Proposition 2.2. Let f(x) = x
4 +px

2 +qx+r be reducible in K but without zeros
in K. Then

G(KF /K) =
;

V4 when r(f) has only one zero in K

C2 when r(f) has all its zeros in K

Proof. Assume that

f(x) = x
4 + px

2 + qx + r = (x2 ≠ ax + b)(x2 + ax + b
Õ),

where a, b, b
Õ œ K, ” = a

2 ≠ 4b and ”
Õ = a

2 ≠ 4b
Õ are not squares in K (since

otherwise, the polynomial f(x) has zeros in K). The zeros of f(x) are a/2 ±
Ô

”

and ≠a/2 ±
Ô

”Õ. The splitting field of f(x) over K is Kf = K(
Ô

”,
Ô

”Õ).

The zeros of the resolvent r(f) are according to Lemma 2.1: a
2
, (

Ô
” ±

Ô
”Õ)2 =

” + ”
Õ ± 2

Ô
””Õ.

The resolvent r(f) has only one zero in K if and only if
Ô

””Õ ”œ K, which is
equivalent to K(

Ô
”) ”= K(

Ô
”Õ), that is, Kf = K(

Ô
”,

Ô
”Õ) has degree 4 over K.

The Galois group G(Kf /K), in this case, is of course isomorphic to V4 – the Kleins
four-group, since all the automorphisms are given by

Ô
” ‘æ ±

Ô
” and

Ô
”Õ ‘æ ±

Ô
”Õ.
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(Notice however that as permutation group, it is not V4, which in our notations,
denotes a transitive copy of Klein’s four group in S4).

The resolvent r(f) has 3 zeros in K if and only if
Ô

””Õ œ K, which is equivalent to
K(

Ô
”) = K(

Ô
”Õ), that is, Kf = K(

Ô
”). Thus in this case the splitting field Kf is

quadratic over K and its Galois group is C2 – cyclic of order 2.

In fact, when we test irreducibility using Proposition 2.1, we can factor f(x) into a
product of two quadratic polynomials (see 2.5 for details). If we already have such
a factorization, then it is useful to note the following direct corollary from the last
proof:

Proposition 2.3. Let

f(x) = x
4 + px

2 + qx + r = (x2 + ax + b)(x2 ≠ ax + b
Õ)

be a factorization of f over K, ” = a
2 ≠ 4b and ”

Õ = a
2 ≠ 4b

Õ. Then

G(Kf /K) =
;

V4 when
Ô

””Õ ”œ K

C2 when
Ô

””Õ œ K

2.10 A useful Lemma

Several times in this text, we use the following easy result:

Lemma 2.3. Let L be a finite field extension of a field K and let f(x) œ K[x] be
an irreducible polynomial. If the degrees of f(x) and L over K are relatively prime,
then the polynomial f(x) is still irreducible over L.

Proof. Let n = deg(f) and r = [L : K] (the degree of the field extension). Let
– be a zero of f(x) in a field containing L. Then [K(–) : K] = n (since f(x) is
irreducible over K) and let [L(–) : L] = m. Of course, we have m Æ n, since f(x)
has degree n and may be reducible over L. The field L(–) contains the field K(–)
as well as the field L.

L(–)
m

K(–)

n

L

r

K

Since n and r are relatively prime and both divide [L(–) : K], the product nr

also divides [L(–) : K] = [L(–) : L][L : K] = mr. Thus n divides m, and since
m Æ n, we have m = n. This tells us that f(x) is also irreducible over L, since
[L(–) : L] = n.
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2.11 How to solve cubic equations?

We want to solve the equation

x
3 + px + q = 0.(8)

Compare the last equality with the well-known identity:

(a + b)3 ≠ 3ab(a + b) ≠ (a3 + b
3) = 0(9)

and choose a, b in such a way that:

p = ≠3ab,

q = ≠(a3 + b
3).(10)

If a, b are so chosen, then x = a + b is a solution of the equation (8). The system

a
3 + b

3 = ≠q,

a
3
b

3 = ≠ p
3

27 ,

shows that a
3
, b

3 are solutions of the quadratic equation:

t
2 + qt ≠ p

3

27 = 0.

Solving this equation gives two solutions: t1 = a
3 and t2 = b

3. Then we choose a, b,
which satisfy (10) and find x = a + b. An (impressing) formula, which hardly needs
to be memorized (it is much easier to memorize the presented method based on
the well-known binomial identity (9)) is thus the following:

x1 = a + b =
3

Û

≠q

2 +
Ú

q2

4 + p3

27 +
3

Û

≠q

2 ≠
Ú

q2

4 + p3

27

Notice that a, b are simply third roots of t1, t2, but we have to be a little cautious
since both a and b my be chosen in 3 di�erent ways.

We leave a discussion of di�erent choices of a, b as an easy exercise, but notice
that in order to solve a cubic equation, it is su�cient to find only one root x1 and
solve a quadratic equation after dividing the cubic by x≠x1. The above expression
(in di�erent notations) was first published by Gerolamo Cardano in his book “Ars
Magna” in 1545 and is known today as Cardano’s formula.
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2.12 How to solve quartic equations?

Essentially, we already know the answer – any quartic polynomial with coe�cients
in a field K can be split into a product of two quadratic polynomials according to
(4) (with a

Õ = ≠a):

(11) f(x) = x
4 + px

2 + qx + r = (x2 + ax + b)(x2 ≠ ax + b
Õ).

where a, b, b
Õ are in a field containing K. We know that if we take a as square root

of any nonzero solution of the resolvent equation

r(f)(t) = t
3 + 2pt

2 + (p2 ≠ 4r)t ≠ q
2 = 0,

the system (5), gives us b and b
Õ. Thus we factorize the quartic and solve two

quadratic equations in order to find all zeros of f(x). This is a very simple method
and very easy to remember if we only know how to deal with a cubic equation (see
2.11). Observe that the resolvent equation always has a nonzero solution, since 0
is the only (triple) solution if and only if p = q = r = 0, that is, f(x) = x

4.

This is in principle the original method given by L. Ferrari2 in the middle of 16th
century and published in Cardano’s book mentioned above. But the formal lan-
guage of algebra was of course di�erent during Cardano’s and Ferrari’s time, so the
solution method was presented rather as recipe how to transform the equation in
order to get a solution. Today, it is usually presented in the following way. One can
start with the general equation

x
4 + mx

3 + px
2 + qx + r = 0,(12)

– it is even not important to assume that m = 0 (but it could be achieved substi-
tuting x = y ≠ m

4 ). It is easy to check that the above equation can be rewritten in
the following way:

3
x

2 + m

2 x + ⁄

2

42
≠

53
m

2

4 + ⁄ ≠ p

4
x

2 +
3

m⁄

2 ≠ q

4
x +

3
⁄

2

4 ≠ r

46
= 0(13)

We simply want to find a number ⁄ such that the quadratic polynomial in square
brackets is a square of a first degree polynomial. This is achieved when the dis-
criminant of the quadratic polynomial in the square bracket equals 0, that is,

3
m⁄

2 ≠ q

42
≠ 4

3
m

2

4 + ⁄ ≠ p

4 3
⁄

2

4 ≠ r

4
= 0(14)

2Lodovico Ferrari (1522-1565) was an Italian mathematician who was a servant, later a student
and finally a successor at the Universisty of Pavia of G. Cardano.
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This is a cubic equation with respect to ⁄. Solving it (e.g. according to 2.11), we
get a root ⁄, which gives a possibility to split the quartic polynomial (12) into a
product of two quadratic polynomials and then solve two quadratic equations.

3 APPENDIX: The group S4 and their subgroups

As a permutation group, the Galois group G(Kf /K) of an irreducible polynomial
f(x) œ K[x] has an important property of transitivity. A permutation group G ™
Sn is called transitive if for any pair i, j œ {1, 2, . . . , n} there is a permutation
‡ œ G such that ‡(i) = j. Of course, this property is valid for Galois groups of
irreducible polynomials, since according to well-known properties of automorphisms
of splitting fields, there is always an automorphism which maps any given zero of
f(x) onto any other zero of this polynomial.

The symmetric group S3 of all permutations of 1, 2, 3 consists of 3! = 6 elements. We
can represent each permutation as an isometry of the plane mapping the equatorial
triangle with vertices in the points 1, 2, 3 on itself. If {a, b, c} = {1, 2, 3}, then
there are 3 rotations: the identity (1), the rotations ±1200: (1, 2, 3), (1, 3, 2) and 3
symmetries in the three heights of the triangle: (1, 2), (2, 3), (1, 3). There are only
two transitive subgroups of S3: the group S3 itself and the subgroup of the rotations
(all even permutations) A3 = {(1), (1, 2, 3), (1, 3, 2)}. All these facts are very easy
to check (e.g. by listing all the subgroups of S3).

The symmetric group S4 of all permutations of 1, 2, 3, 4 consists of 4! = 24 elements.
We can represent each permutation as an isometry of the space mapping the tetra-
hedron with vertices in the points 1, 2, 3, 4 on itself. If {a, b, c, d} = {1, 2, 3, 4},
then each non-identity permutation can be written as a cycle or a composition of
them:

6 symmetries (a, b) of order 2: in the planes through the vertices c, d and the middle
of the side between a and b;

8 rotations (a, b, c) of order 3: around the axis through the vertex d perpendicularly
to the plane through the points a, b, c;

3 rotations (a, b)(c, d) of order 2: 180 degrees around the axis through the middles
of the sides a, b and c, d. Notice that these rotations together with the identity (1)
form a transitive group of order 4. It is a transitive presentation of Klein’s four
group, which is usually denoted by V4, that is,

V4 = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.

6 cycles (a, b, c, d) of order 4: compositions of the rotation (a, b, c) with the symme-
try (c, d).

Together with the identity (1), we have 24 all possible isometric mappings of the
tetrahedron on itself. Notice that the even permutations are exactly the 12 rota-
tions, and the odd permutations are the 6 symmetries and the 6 compositions of a
rotation of order 3 and a symmetry.
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In order to describe all transitive subgroups of S4, notice that in any subgroup
G, which contains at least one odd permutation ‡, the half of the elements are
odd permutations, and the other half are even. In fact, if G0 denotes all even
permutations in G, then G0 is a (normal) subgroup of G and G = G0 fi ‡G0, since
every permutation · in G is either even or, if it is odd, then ‡

≠1
· is even (that is,

in G0).

Using this observation, we first note that the group S4 has exactly one (normal)
subgroup of order 12. This is the subgroup A4 consisting of even permutations
(rotations of the tetrahedron)3. In fact, if G is a subgroup of S4 of order 12 and
contains at least one odd permutation, then the intersection A4 fl G is a subgroup
of A4 of order 6. Such a subgroup of order 6 is not cyclic (there are no elements
of order 6 in S4), so it must be isomorphic with S3. Hence, it contains 3 elements
of order 2. The only even permutations of order 2 in S4 are the 3 rotations 1800,
which together with the identity form the group V4 of order 4. This is of course a
contradiction, since a group of order 4 can not be a subgroup of a group of order
6. Thus S4 has only one subgroup of order 12 – the one consisting of all even
permutations.

Next, the group S4 may have subgroups of order 8. There are in fact 3 subgroups
of order 8. All are isomorphic with the square group D4 and are transitive. In order
to prove this, assume that G is a subgroup of order 8. Then it must consist of both
even and odd permutations – all can not be even, since a group of order 8 can not
be a subgroup of a group of order 12. The subgroup G0 of G consisting of the even
permutations (that is, rotations of the tetrahedron) must be G0 = V4, since the
remaining rotations all have order 3 (can not belong to a group of order 4). The
odd permutations in G can not all be of order 2. Those are exactly the symmetries
of the tetrahedron. Between 4 such symmetries, there are at least 2 which shift the
same vertex (of four possible), that is, they have form (a, b) and (a, c). Then the
group G contains (a, b)(a, c) = (a, c, b), which as an element of order 3. This order
is not allowed by G. Thus G must contain an odd permutation ‡ of order 4. An
easy direct computation shows that there are exactly 3 possibilities for ‡V4, which
give 3 possibilities for G:

D4 = V4 fi {(1, 2, 4, 3), (1, 3, 4, 2), (1, 4), (2, 3)},

D
Õ
4 = V4 fi {(1, 2, 3, 4), (1, 4, 3, 2), (1, 3), (2, 4)},

D
ÕÕ
4 = V4 fi {(1, 3, 2, 4), (1, 4, 2, 3), (1, 2), (3, 4)}.

It is clear that these groups are transitive. Each group gives a description of all
isometries of a square corresponding to a numbering of its vertices a, b, c, d according
to the rotations of square given by the elements of order 4 belonging to it.

3In general, the subgroup consisting of all even permutations in Sn is denoted by An and
called the alternated group of degree n. Its order is n!/2.
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There are no transitive subgroups G of S4 of order 6. In fact, such a subgroup
can not be cyclic, since there are no elements of order 6 in S4. Thus it must
be isomorphic to S3. As we know such a group has 3 elements of order 2 and 2
elements of order 3. Between the elements of order 2 must be at least 2 symmetries
(otherwise G0 is a subgroup of G, which is impossible). They must shift a common
vertex a. Otherwise, they are of the form (a, b), (c, d) with di�erent a, b, c, d. Then
(1), (a, b), (c, d), (a, b)(c, d) is a subgroup of G, which is impossible. If (a, b) and
(a, c) are in G, then it is easy to check that G is the group of all permutations of
a, b, c. It is not transitive on the set {1, 2, 3, 4}.

Finally, there is only one transitive subgroup of order 4 – the group V4. In fact, it
is easy to check that the subgroups generated by the elements of order 4 are not
transitive. A non-cyclic subgroup of order 4 must contain 3 elements of order 2. A
similar argument to that given above in connection with the subgroups of order 6
shows that it is impossible to get a transitive group with two symmetries. Thus we
can only have the rotations giving V4.

Of course, the subgroups of order 2 are never transitive.

Summarizing, we have the following list of transitive subgroups of S4:

S4, A4, D4, D
Õ
4, D

ÕÕ
4 , V4.

The group V4 is a subgroup of all these groups. Notice that the groups D4, D
Õ
4, D

ÕÕ
4

are all isomorphic. They consist of all isometries of a square corresponding to a
numbering of its vertices a, b, c, d (according to the rotations given by the elements
of order 4 belonging to it). Recall that such a group contains 3 subgroups of order
4: V4 (the rectangle group), the cyclic group of the rotations of the square:

C4 = {(1), (a, b, c, d), (a, d, c, b), (a, c)(b, d)}

and a non-transitive representation of Klein’s four group (the romb group):

V
Õ

4 = {(1), (a, b), (c, d), (a, b)(c, d)}.
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