Dilations and the arbelos

Hiroshi Okumura

251 Moo 15 Ban Kesorn, Tambol Sila Amphur Muang Khonkaen 40000, Thailand hiroshiokmr@gmail.com

1 Introduction

For a point *O* on a segment *AB* with $|OA| = 2a$ and $|OB| = 2b$, let α , β and γ be semicircles with diameters *AO*, *BO* and *AB* respectively erected on the same side. The area surrounded by the three semicircles is called an arbelos. The radical axis of α and β divides the arbelos into two curvilinear triangles with congruent incircles, which are called the twin circles of Archimedes (see Figure 1). Leon Bankoff found that the circle orthogonal to α , β and the incircle of the arbelos is congruent to the twin circles [1] (see Figure 2). Circles congruent to the twin circles are said to be Archimedean. The common radius of the Archimedean circles is $ab/(a + b)$, which is denoted by r_A . In this article we generalize the twin circles, also we get some other new infinite Archimedean circles whose centers lie on a conic section by using dilations with center *O*.

We use a rectangular coordinate system with origin *O* such that the coordinates of *A* and *B* are $(2a, 0)$ and $(-2b, 0)$ respectively. The radical axis of α and β is denoted by \mathcal{L} . Let σ be a dilation with center O and scale factor $k > 0$. The image of a point *P* by σ is denoted by P^{σ} . For two points *P* and *Q* on the line *AB*, (PQ) denotes the semicircle with diameter *P Q*, where all the semicircles are constructed in the region $y > 0$.

2 The twin circles of Archimedes

In this section, we generalize the twin circles of Archimedes. Floor van Lamoen has found that for a dilation τ with center A, the circle touching the semicircles (AO^{τ}) externally (AB^{τ}) internally and the line $\mathcal L$ from the side opposite to *B* is Archimedean [2]. A similar property also holds for the dilation with center *O* (see Figure 3).

Theorem 1. The circle touching the semicircles (OA^{σ}) externally (AB^{σ}) internally and the line $\mathcal L$ from the side opposite to B is Archimedean.

Proof. Let x be the radius of the touching circle. By the Pythagorean theorem

$$
((a + kb) - x)^2 - ((a - kb) - x)^2 = (ka + x)^2 - (ka - x)^2.
$$

Solving the equation we get $x = r_A$.

One of the twin circles touching the semicircle α is obtained when σ is the identity. By exchanging the roles of the points *A* and *B* we get one more Archimedean circle.

Theorem 2. The circle touching the semicircles $(OA^{\sigma^{-1}})$ externally and $(A^{\sigma}B^{\sigma^{-1}})$ internally and the line $\mathcal L$ from the side opposite to *B* has radius $k r_A$. The point of tangency of the touching circle and $\mathcal L$ coincides with the point of tangency of one of the twin circles touching α and \mathcal{L} .

Proof. The first part is proved similarly to Theorem 1 (see Figure 4). The second part follows from the fact: the segment length of the common external tangent of μ to the commutation of the commutation of the commutation externally touching circles with radii *p* and *q* are $2\sqrt{pq}$. □

$$
\Box
$$

Exchanging the roles of the points A and B , we get one more circles of radius $k r_A$. And the twin circles are obtained when σ is the identity. The semicircle $(A^{\sigma}B^{\sigma^{-1}})$ belongs to the pencil of circles determined by the semicircle (AB) and the line \mathcal{L} .

3 Two infinite sets of Archimedean circles

From now on, we include the case in which σ has a negative scale factor k , i.e., if $k < 0$ then $\overline{OP^{\sigma}} = -|k|\overline{OP}$ for any point *P*. Let $\alpha(k) = (OA^{\sigma})$ and $\beta(k) = (OB^{\sigma})^0$. Also we denote the line $x = 2kr_A$ by \mathcal{P}_k . Hence $\mathcal{P}_0 = \mathcal{L}$, and \mathcal{P}_1 touches the Archimedean circle touching α , γ and \mathcal{P}_0 . The next theorem is also proved similarly to Theorem 1 (see Figures 5 and 6).

Theorem 3. Let *k* be a real number.

(i) If $0 < k$, then the circle touching $\alpha(k)$ externally, $\alpha(k+1)$ internally and \mathcal{P}_k from the side opposite to the point *O* is Archimedean.

(ii) If $-1 \leq k < 0$, then the circle touching both $\alpha(k)$ and $\alpha(k+1)$ externally and \mathcal{P}_{-k} from the side opposite to the point *A* is Archimedean.

From (i) in the theorem we get an infinite set consisting of Archimedean circles touching $\alpha(k)$, $\alpha(k+1)$ and \mathcal{P}_k for some positive real number k. The line \mathcal{P}_1 passes through the point of intersection of $\alpha(2)$ and γ . This can be proved by using elementary properties of chords with the Pythagorean theorem. In [3] a more general aspect is considered. Therefore the circle touching α externally $\alpha(2)$ internally and the perpendicular to *AB* through the point of intersection of γ and $\alpha(2)$ from the side opposite to *O* is Archimedean from the case $k = 1$ (see Figure 7).

From (ii) we also get an infinite set consisting of Archimedean circles touching $\alpha(k)$, $\alpha(k+1)$ and \mathcal{P}_{-k} for a real number *k* satisfying $-1 \leq k < 0$.

4 Conic sections

Let (x, y) be the center of the Archimedean circle obtained by (i) in Theorem 3. Then $x = (2k+1)r_A$. While by the Pythagorean theorem, $y^2 + (x - ka)^2 = (r_A + ka)^2$.

⁰Those notations are slightly changed from the ones in [3] and [4].

Eliminating *k* from the two equations and rearranging, we get

$$
\frac{x^2}{r_A^2} - \frac{y^2}{r_A^2 a/b} = 1.
$$

Therefore (x, y) lies on a part of the hyperbola lying in the quadrant I with focal points $(\pm \sqrt{a r_{A}}, 0)$ and asymptote

$$
y = \sqrt{\frac{a}{b}}x.
$$

Conversely, any point on this curve can be obtained as a center of an Archimedean circle determined in (i). The asymptote, denoted by the dotted line in Figure 7, passes through the point of intersection of $\alpha(k)$ and \mathcal{P}_k .

Figure 7.

Figure 8. $k = -0.25$

Let (x, y) be the center of the Archimedean circle determined in (ii), then we can also get

$$
\frac{x^2}{r_A^2} + \frac{y^2}{r_A^2(a+2b)/b} = 1.
$$

Therefore (x, y) lies on a part of the ellipse lying in the region $y > 0$ together with the point $(r_A, 0)$ with minor axis $2r_A$ and major axis $2r_A\sqrt{(a+2b)/b}$ and

focal points $(0, \pm \sqrt{a r_A})$ (see Figure 8). Conversely, any point on this curve can be obtained as a center of an Archimedean circle determined in (ii). The Archimedean √ circle touching α , γ and \mathcal{P}_0 , touches \mathcal{P}_0 at the point $(0, 2\sqrt{a r_A})$. Therefore the focal points are obtained as the midpoint of the line segment joining *O* and the tangent point and its reflection in the line *AB*.

Both the conic sections are expressed as follows:

$$
\frac{x^2}{r_\text{A}^2} \mp \frac{y^2}{r_\text{A}^2(a+b\mp b)/b} = 1.
$$

Acknowledgments

The author thanks the referee for a number of helpful suggestions.

References

- [1] L. Bankoff, Are the twin circles of Archimedes really twins?, Math. Mag., **47** (1974) 214–218.
- [2] F. van Lamoen, Archimedean adventures, Forum Geom., **6** (2006) 79–96.
- [3] H. Okumura and M. Watanabe, Archimedean circles of Schoch and Woo, Forum Geom., **4** (2004) 27–34.
- [4] H. Okumura and M. Watanabe, Remarks on Woo's Archimedean circles, Forum Geom., **7** (2007) 125–128.