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1 Introduction
For a point O on a segment AB with |OA| = 2a and |OB| = 2b, let α, β and γ be
semicircles with diameters AO, BO and AB respectively erected on the same side.
The area surrounded by the three semicircles is called an arbelos. The radical axis of
α and β divides the arbelos into two curvilinear triangles with congruent incircles,
which are called the twin circles of Archimedes (see Figure 1). Leon Bankoff found
that the circle orthogonal to α, β and the incircle of the arbelos is congruent to the
twin circles [1] (see Figure 2). Circles congruent to the twin circles are said to be
Archimedean. The common radius of the Archimedean circles is ab/(a+ b), which
is denoted by rA. In this article we generalize the twin circles, also we get some
other new infinite Archimedean circles whose centers lie on a conic section by using
dilations with center O.
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Figure 1. Figure 2.

We use a rectangular coordinate system with origin O such that the coordinates
of A and B are (2a, 0) and (−2b, 0) respectively. The radical axis of α and β is
denoted by L. Let σ be a dilation with center O and scale factor k > 0. The image
of a point P by σ is denoted by Pσ. For two points P and Q on the line AB, (PQ)
denotes the semicircle with diameter PQ, where all the semicircles are constructed
in the region y > 0.
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2 The twin circles of Archimedes
In this section, we generalize the twin circles of Archimedes. Floor van Lamoen
has found that for a dilation τ with center A, the circle touching the semicircles
(AOτ ) externally (ABτ ) internally and the line L from the side opposite to B is
Archimedean [2]. A similar property also holds for the dilation with center O (see
Figure 3).
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Figure 3: k = 1.5

Theorem 1. The circle touching the semicircles (OAσ) externally (ABσ) internally
and the line L from the side opposite to B is Archimedean.

Proof. Let x be the radius of the touching circle. By the Pythagorean theorem

((a+ kb)− x)2 − ((a− kb)− x)2 = (ka+ x)2 − (ka− x)2.

Solving the equation we get x = rA.

One of the twin circles touching the semicircle α is obtained when σ is the iden-
tity. By exchanging the roles of the points A and B we get one more Archimedean
circle.

Theorem 2. The circle touching the semicircles (OAσ−1) externally and (AσBσ−1)
internally and the line L from the side opposite to B has radius krA. The point of
tangency of the touching circle and L coincides with the point of tangency of one
of the twin circles touching α and L.

Proof. The first part is proved similarly to Theorem 1 (see Figure 4). The second
part follows from the fact: the segment length of the common external tangent of
two externally touching circles with radii p and q are 2√pq.
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Figure 4. k = 1.5
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Exchanging the roles of the points A and B, we get one more circles of radius krA.
And the twin circles are obtained when σ is the identity. The semicircle (AσBσ−1)
belongs to the pencil of circles determined by the semicircle (AB) and the line L.

3 Two infinite sets of Archimedean circles
From now on, we include the case in which σ has a negative scale factor k, i.e., if
k < 0 then −−→OPσ = −|k|−−→OP for any point P . Let α(k) = (OAσ) and β(k) = (OBσ)0.
Also we denote the line x = 2krA by Pk. Hence P0 = L, and P1 touches the
Archimedean circle touching α, γ and P0. The next theorem is also proved similarly
to Theorem 1 (see Figures 5 and 6).

Theorem 3. Let k be a real number.
(i) If 0 < k, then the circle touching α(k) externally, α(k + 1) internally and Pk
from the side opposite to the point O is Archimedean.
(ii) If −1 ≤ k < 0, then the circle touching both α(k) and α(k + 1) externally and
P−k from the side opposite to the point A is Archimedean.
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Figure 5. 0 < k Figure 6. −1 < k < 0

From (i) in the theorem we get an infinite set consisting of Archimedean circles
touching α(k), α(k+1) and Pk for some positive real number k. The line P1 passes
through the point of intersection of α(2) and γ. This can be proved by using ele-
mentary properties of chords with the Pythagorean theorem. In [3] a more general
aspect is considered. Therefore the circle touching α externally α(2) internally and
the perpendicular to AB through the point of intersection of γ and α(2) from the
side opposite to O is Archimedean from the case k = 1 (see Figure 7).

From (ii) we also get an infinite set consisting of Archimedean circles touching
α(k), α(k + 1) and P−k for a real number k satisfying −1 ≤ k < 0.

4 Conic sections
Let (x, y) be the center of the Archimedean circle obtained by (i) in Theorem 3.
Then x = (2k+1)rA. While by the Pythagorean theorem, y2+(x−ka)2 = (rA+ka)2.

0Those notations are slightly changed from the ones in [3] and [4].
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Eliminating k from the two equations and rearranging, we get

x2

r2
A
− y2

r2
Aa/b

= 1.

Therefore (x, y) lies on a part of the hyperbola lying in the quadrant I with focal
points (±√arA, 0) and asymptote

y =
√
a

b
x.

Conversely, any point on this curve can be obtained as a center of an Archimedean
circle determined in (i). The asymptote, denoted by the dotted line in Figure 7,
passes through the point of intersection of α(k) and Pk.
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Figure 7.
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Figure 8. k = −0.25

Let (x, y) be the center of the Archimedean circle determined in (ii), then we can
also get

x2

r2
A

+ y2

r2
A(a+ 2b)/b = 1.

Therefore (x, y) lies on a part of the ellipse lying in the region y > 0 together
with the point (rA, 0) with minor axis 2rA and major axis 2rA

√
(a+ 2b)/b and



8 Hiroshi Okumura Normat 1/2012

focal points
(
0,±√arA

)
(see Figure 8). Conversely, any point on this curve can be

obtained as a center of an Archimedean circle determined in (ii). The Archimedean
circle touching α, γ and P0, touches P0 at the point (0, 2√arA). Therefore the focal
points are obtained as the midpoint of the line segment joining O and the tangent
point and its reflection in the line AB.

Both the conic sections are expressed as follows:

x2

r2
A
∓ y2

r2
A(a+ b∓ b)/b = 1.
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