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1 Introduction
For a point O on the segment AB with |AO| = 2a and |BO| = 2b, let α, β
and γ be the semicircles with diameters AO, BO and AB respectively erected on
the same side. The area surrounded by the three semicircles is called an arbelos
(see Figure 1). The radical axis of the two inner semicircles divides the arbelos
into two curvilinear triangles with congruent incircles. The circles were studied by
Archimedes, and are called the twin circles of Archimedes. Circles congruent to the
twin circles are called Archimedean circles, whose radii is ab/(a+ b).
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Figure 2. Figure 3.

More than two thousand years after, Leon Bankoff found another Archimedean
circle. If the incircle of the arbelos touches the semicircles α, β at points P and Q,
the circle W3 passing through the three points P , Q and O is Archimedean (see
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Figure 2) [1]. With this circle he asserted that the twin circles are two members of
the triplet. Later he found one more Archimedean circle W4, which is the maximal
circle touching the external common tangent of α and β and the circular arc of
the semicircle γ cut by the tangent internally [2] (see Figure 3). Since many kinds
of Archimedean circles have been found today, there should be some reason to
designate these circles as a triplet. In this sense, it seems irrelevant that the twin
circles and the circle W3 should be regarded as a triplet. In this article we show
that the circleW4 forms a real triplet with the twin circles. Also we show that there
are infinite triplet circles (infinite pairs of three congruent circles) in the arbelos.

2 The Archimedean triplet circles
We use the following lemma in the old Japanese geometry [5].
Lemma. A circle C with radius r is divided by a chord t into two arcs and let h be
the distance from the midpoint of one of the arcs to t. If two externally touching
circles C1 and C2 with radii r1 and r2 also touch the chord t and the other arc of
the circle C, then h, r, r1 and r2 are related as

1
r1

+ 1
r2

+ 2
h

= 2
√

2r
r1r2h

.

Proof. We reproduce the proof in [3] for the convenience of the reader (see Figure
4). The centers of C1 and C2 can be on the opposite sides of the normal dropped on
t from the center of C or on the same side of this normal. From the right triangles
formed by the centers of C and Ci (i = 1, 2), the line parallel to t through the
center of C, and the normal dropped on t from the centers of Ci,∣∣∣√(r − r1)2 − (h+ r1 − r)2 ±

√
(r − r2)2 − (h+ r2 − r)2

∣∣∣ = 2
√
r1r2,

where we used the fact that the segment length of the common external tangent
of C1 and C2 between the tangency points is equal to 2√r1r2. The formula of the
lemma follows from this equation.
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If C3 is the circle with radius r3 = h/2 touching the chord t and the circle C in the
lemma (see Figure 5), r, r1, r2 and r3 are related as

1
r1

+ 1
r2

+ 1
r3

= 2
√

r

r1r2r3
. (1)

Since (1) is symmetric in r1, r2 and r3, it also holds when we change the roles of
the circles C1, C2 and C3 as in Figures 6 and 7.
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Therefore we get:
Theorem. Let C and Ci (i = 1, 2, 3) be circles of radii r and ri respectively and let
C be divided by a chord t into two arcs. If two of C1, C2, C3 touch externally and
also touch t and one of the arcs, and the remaining is the maximal circle touching
t and the remaining arc, then r, r1, r2 and r3 are related as (1).

If we regard (1) as a quadratic equation for 1/√r3, it has two positive solutions.
Therefore solving (1) for r3, we always get two positive solutions, one of which is
the radius of C3. The other is equal to the radius of the circle different from C3
but satisfying the same condition satisfied by C3 as denoted by the hatched lines
in Figures 8, 9 and 10. We call the circle the conjugate of C3 with respect to C1
and C2.
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Figure 8. Figure 9. Figure 10.

Let us assume r = a+ b, r1 = a and r2 = b in Theorem. In this case, the centers of
the circles C, C1 and C2 are collinear. Therefore the figure consisting of the three
circles is symmetric in this line. This implies that the conjugate of C3 with respect
to C1 and C2 is congruent to C3, i.e., (1) has only one double root (see Figures
11, 12, 13). This implies that the twin circles and W4 are congruent. Actually (1)
gives r3 = ab/(a+ b) in this case. As we have just seen, the congruence of the three
circles is obtained from the same equation at the same time. Hence we may say
that the three circles form a real triplet.
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Figure 11. Figure 12. Figure 13.

If two circles C1 and C2 are fixed, the product of the radii of the circle C3 and its
conjugate conjugate with respect to C1 and C2 is constant for a given circle C by
(1). It equals (ab/(a+b))2 if a and b are the radii of C1 and C2. The same assertion
can also be found in Japanese geometry in the case of Figure 8 [4].

Let t be the line lying along the chord of C touching C3 in Figure 8. Let us
consider the inversion in the circle with center at the point of tangency of C and C3
passing through the points of intersection of C and t. By this inversion t and C are
interchanged, while C1 and C2 remain unchanged. Therefore they are orthogonal
to the inversion circle. Hence the internal common tangent of the circles C1 and
C2 passes through the center of the inversion.

3 Infinite triplets
In this section we show that there are infinite pairs of triplet circles in the arbelos.
We now observe that α, β and γ are not semicircles but circles. Let δ1

0 = δ2
0 = δ3

0 =
β. Let δ1

1 and δ2
1 be the twin circles of Archimedes touching α and β respectively.

To avoid overlapping figures, let δ3
1 be the reflected image of the circles W4 in the

line AB (see Figure 14). For i = 1, 2, 3, let us assume that the circles δi
0, δi

1, δi
2, · · · ,

δi
k are defined (k ≥ 1), where δ1

j , δ2
j , δ3

j are congruent for j = 0, 1, 2, · · · , k. Then
δk+1 is the conjugate of δk−1 with respect to α and δk. Now the circles δi

0, δi
1, δi

2,
· · · , δi

k, · · · are defined.
By the definition, δ1

k, δ2
k, δ3

k are congruent for any non-negative integer k. Also
from the definition, (i) If k is even, δ1

k is the maximal circle touching a chord t of
γ and the arc of γ cut by t, i.e., it touches t from the side opposite to α. Hence
it does not touch α if k 6= 0, since a chord of γ touches α at its midpoint if and
only if it lies along the radical axis of α and β. While δ1

k touches α if k is odd. (ii)
δ2

1 , δ2
2 , · · · , δ2

k, · · · are chain of circles touching γ and the radical axis of α and β
from the side opposite to α. (iii) δ3

k touches α if k is even and does not touch α if
k is odd. The three statements imply that δ1

k, δ2
k, δ3

k are different for any natural
number k. Therefore we get infinite pairs of three congruent but different circles.
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We now consider each of the triplets as a set, which is denoted by a point on the
two arcs in Figure 15, where Dn = {δ1

n, δ2
n, δ3

n}. Three points forming vertices
of a triangle describe that they consist of circles satisfying the hypothesis of the
theorem with the circle γ. For two triangles with one side in common in the figure
(e.g. D1D2P1 and D1D2{α}), each of the two opposite vertices is the set consisting
of conjugate of each of the circles belonging to the other vertex with respect to
circles belonging to the common vertices. The figure shows that the infinte triplets
expressed by D1, D2, D3, · · · do not exhaust all the possible triplets. For example,
triplets expressed by P1, P2, P3, · · · do not appear in the triplets expressed by D1,
D2, D3, · · · .
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