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1 Introduction
The study of series appears everywhere in Analysis. And the first issue is to know
whether the series is convergent or not. Most of the times we need to appeal to
absolute convergence and, in this way, we end up by trying to understand series of
positive numbers. There are several criteria to decide if a series of positive numbers
is convergent or not, however most of them seems to have two similar characte-
ristics: first, they come, in one way or another, from the Comparison Principle. In
certain sense, one could think that this fact is limiting our study of convergence of
series of positive numbers. Second, none of them gives equivalent conditions. For
example D’Alambert’s, Cauchy’s or Raabe’s criteria fail when the corresponding
limit is 1.

Here we present another criterion which gives an equivalent condition for the
convergence of a series of positive numbers, which in fact does not come from the
Comparison Principle. This criterion came to me when I was trying to prove to the
students that the dual of L2 is L2 in an elementary way, now Corollay 7 below.
By gravitation law, I came needing to prove Theorem 2. Searching and asking to
experts, one could conclude that the result is not entirely known to the experts, even
though seems a nice an useful result as one can see for the applications included
here. Even though finally some partial references, included in the bibliography,
appeared in the process it was only the referee who mentioned to me the excellent
book by de la Vallée Poussin (7). In page 432 of this book there is a result presented
as Exercise 3, that contains basically all the results presented here, as well as the
results in (1) and (3), as particular cases. In the note I include both the Exercise of
de la Vallée Poussin’s book, and also the theorem that appeared naturally to me,
together with a short, selfcontained proof, and also several applications that enlight
the power of this criterion, which could be considered as part of the standard theory
of series of positive numbers.
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Theorem 1 (De la Vallée Poussin) Let an ≥ 0 and
∑
an divergent. Suppose f(x)

is decreasing and limx→∞ f(x) = 0. Let SN =
∑

k≤N ak and F (x) =
∫ x

0 f(t)dt.
Consider

Sf,1 =
∑

f(Sn)an Sf,2 =
∑

f(Sn−1)an.

Then,

1. If F (x) is bounded then Sf,1 is convergent.

2. If F (x) is unbounded then Sf,2 is divergent.

3. If an is bounded, then Sf,1 and Sf,2 are both convergent or both divergent at
the same time.

Theorem 2 Let ak > 0 for k ≥ 0, and SN =
∑

k≤N ak. Then,

1.
∑
ak converges if and only if

∑ ak
Sk

does.

2.
∑ ak

Sk(log(Sk+1))2 is always convergent.

Remark. Note that in Theorem 1 the monotony condition on f(x) already gua-
rantees the existence of F (x). Also, the “difficult” implication of part (1) of the
Theorem 2 is already proved in a paper by Abel in 1828, (1). Dini in 1867 in (3)
improved his result and obtained the convergence of the series

∑
n 6=N

an
Sαn

for α > 1.
However, their proofs, more involved than the showed here, lose enough so it is not
achieved the second part of Theorem 2. The result when

∑
an is convergent, is not

a consequence of Theorem 1. We give an example below.

2 Proofs.
Before proving the theorem, we should add some remarks. First let us say that
Theorem 2 is in fact a criterion for series of positive numbers. Indeed, otherwise it
could happen that ak

Sk
is not well defined for infinitely many k. But even if this is

not the case, one can not ensure the result. Let us for example consider a1 = 1 and
ak = 3(−1/2)k−1 for any k ≥ 2. Then

∑
ak is convergent by Leibniz’s criterion.

However, for any k ≥ 2, Sk =
∑k

j=1 aj = 1
3ak, and so

∑ ak
Sk

is divergent. Also, we
should note that the second part of the theorem would not remain true by removing
1 from the logarithm. To see this, consider ak = 1

k(k+1) . Then, Sk = 1 − 1
k+1 ,

| logSk| < 2
k+1 , and so

∑ ak
Sk(log(Sk))2 > 1

4
∑ 1

1− 1
k+1

, is a divergent series. Notice
that in this case Sk is convergent. Clearly this is the only case in which adding 1
to the argument of the logarithm is an important matter.

2.1 Proof of the Theorem 1.
To prove Parts (1) and (2), we note that, since f is decreasing,

f(Sn)an ≤
∫ Sn

Sn−1

f(t)dt ≤ f(Sn−1)an
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and so ∑
n≤N

f(Sn)an ≤
∫ SN

0
f(t)dt ≤

∑
n≤N

f(Sn−1)an.

The result follows by taking limits when N →∞. To prove Part (3), observe that

0 ≤
∑
n≤N

(f(Sn−1)− f(Sn)) an ≤ K
∑
n≤N

(f(Sn−1)− f(Sn)) = K(f(0)− f(SN )),

whenever an ≤ K, by the monotonicity of f . Again, taking limits we find that
0 ≤ Sf,2 − Sf,1 ≤ Kf(0) and the result follows.

2.2 Proof of the Theorem 2.
If S =

∑
ak is convergent, both results in the theorem are trivial. Indeed, note

that in this case Sk > S − ε for any ε > 0 and k sufficiently large depending on
ε. Then, we assume SN defines a divergent series and hence, by dropping the first
terms we can assume without loss of generality that S1 > 1.

• Part (1). We have to prove that
∑ ak

Sk
is divergent. This is a particular case of

Theorem 1 with f(x) = 1
x . We include here the proof I gave to the students.

Let us start by observing that

log(SK) = log
(

K∏
k=1

Sk

Sk−1

)
=

K∑
k=1

log
(

Sk

Sk−1

)

= −
K∑

k=1
log
(
Sk−1

Sk

)
= −

K∑
k=1

log
(

1−
(

1− Sk−1

Sk

))
= −

K∑
k=1

log
(

1− ak

Sk

)
.(1)

If ak 6= o(Sk), the result is trivial. Hence, we assume limk→∞
ak
Sk

= 0, and so, for
k > K0, 0 < ak

Sk
< 1

2 . Then, the inequality

x < − log(1− x) < 2x (2)

valid for any 0 < x < 1
2 , gives us for any K > K0 in (1),

log(SK) < −
K0∑

k=1
log
(

1− ak

Sk

)
+ 2

K∑
j=K0

ak

Sk
,

and the result follows.

• Part (2). Since
∑ ak

Sk(log(Sk+1))2 <
∑ ak

Sk(log(Sk))2 , it is enough to prove conver-
gence of the second series. Now, by (2),

ak

Sk
< − log

(
Sk−1

Sk

)
=
∫ Sk

Sk−1

1
t
dt
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and so, summing for k > 1,

∑
k≤K

ak

Sk(log(Sk))2 <
∑
k≤K

∫ Sk

Sk−1

1
t log(t)2 dt =

∫ SK

S1

1
t log(t)2 dt < +∞

The result follows.

3 Examples
Corollary 3

∑
k≤K

1
k diverges

Proof: Trivial from Theorem 2 and the divergence of
∑

k≤K 1.

Corollary 4 The series
∑

n
nn

n!en is divergent.

Proof: For any n ≥ 1, the inequality

e < (1 + 1
n

)n+1,

follows from (2) with x = 1
n+1 . Hence (n+1)n+2

(n+1)!en+1 > nn+1

n!en > · · · ≥ 1
e , and so the

series
∑

n
nn+1

n!en is divergent. Moreover, Sn =
∑n

j=1
jj+1

j!ej >
n
e , and so

∑
n

nn

n!en
>

1
e

∑
n

nn+1

n!enSn
.

The result now follows by Theorem 2.

Corollary 5 Let f ′(t) ≥ 0 a decreasing function, and f(0) > 0. Then,
∑
f ′(n)

diverges if and only if
∑ f ′(n)

f(n) diverges. Moreover,
∑ f ′(n)

f(n)(log(f(n)+1))2 always con-
verges.

Proof: Again, in the case when
∑
f ′(n) is convergent, both results are trivial by

noting that f(n) ≥ f(0), so we will assume
∑

n≤N f ′(n)→∞ with N . Let us prove
the first part of Corollary 5. Now, since

Sn =
∑

1≤j≤n

f ′(j) <
∫ n

0
f ′(t)dt = f(n)− f(0) < f(n), (3)

we deduce that f(n)→∞ with n. Moreover,

Sn >

∫ n

1
f ′(t)dt = f(n)− f(1) > 1

2f(n),
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for n sufficiently large. Hence,

∑
n≤N

f ′(n)
Sn

< 2
∑
n≤N

f ′(n)
f(n) ,

and the result follows from Theorem 2.

The second part of Corollary 5 follows from the second part of Theorem 2 and
(3).

Let log1(x) = log x, and for any integer j, logj+1(x) = log(logj(x)).

Corollary 6 For any integer J ,
∑

k
1

k
∏

j≤J
logj k

is divergent. On the other hand∑
k

1
k
∏

j≤J
logj k(logJ+1 k)2 is convergent.

Proof: In Corollary 5, take fJ(t) = logJ(t). Note that for any fJ(t) = log fJ−1(t)
we have f ′J(t) = f ′J−1(t)

fJ−1(t) . Now, Since f ′J(t) = 1
t
∏

j≤J−1
logj t

= f ′J−1(t)
fJ−1(t) , we just have

to use Corollary 3, Corollary 5, and apply induction. For the second part, use the
second part of Corollary 5, (note that for any J and t sufficiently large depending
on J , logJ t >

1
2 logJ(t+ 1)).

We include one final example just to show the wide range of applications of
this criterion. We will use it to give a new proof of a well known fact in Analysis,
consequence of (L2)∗ = L2.

Corollary 7 Let (X,µ) an space of measure with µ(X) <∞. Suppose f : X → R
is a measurable function such that∫

X

|fg|dµ <∞,

for any g ∈ L2(X). Then, f ∈ L2(X).

Proof: Without lost of generality we can assume f ≥ 0. By taking g = 1 we see
that f ∈ L1(X). Let us call Ak = {x ∈ X : k ≤ f(x) < k + 1}. Then

∑
k≥0

kµ(Ak) ≤
∫

X

fdµ <∞. (4)

Now suppose f 6∈ L2(X). Then

∑
k≥0

(k + 1)2µ(Ak) >
∫

X

f2dµ =∞,

and so, by (4) ∑
k≥0

k2µ(Ak) =∞.
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Now, let us call Sk =
∑k

j=1 j
2µ(Aj), and consider g(x) = k

Sk
for any x ∈ Ak. Then

g ∈ L2(X) since ∫
X

g2dµ =
∑
k≥0

k2

S2
k

µ(Ak) <∞

by the second part of Theorem 2, (note that Sk > (log(Sk + 1))2 for k sufficiently
large), meanwhile ∫

X

fgdµ >
∑
k≥0

k2

Sk
µ(Ak) =∞,

by the first part of Theorem 2. Hence, we get a contradiction and the result follows.

Clearly both, Theorem 2 and Corollary 5, seem to have a wide variety of appli-
cations, and we leave to the interested reader to find new ones.
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