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On Comparison and Change

Memory is short. The developers of modern mathematics once told us how to
reason about mathematical operations. Now important parts of this are forgotten
or misinterpreted. During the late 19th century e�orts were made to bring the
theoretical base for arithmetic to a closure. It ended up in a theory for logical
manipulation of symbols. But the want for “pure abstraction” went alongside of
a growing dissociation from reality. In the end we got proper theories for symbol
expressions, but poor descriptions of how to lend structure to real-world mathe-
matics. Accordingly a main issue in education is the di�culties with interpreting
between math as experienced in everyday life and math as expressed by symbol
expressions. They don’t agree in a simple and straightforward way.

In this essay I will lay forward some informative models for central mathematical
ideas and concepts. Those models take advantage from doing some deviations from
the conventional way of writing and interpreting expressions. Nevertheless do those
deviations agree better with modern mathematical theories, and concurrently with
practical thinking, as well as the reasoning of the ancient Greeks. The way to per-
ceive expressions will mutually support the perception of mathematical structures
in real life.

What a comparison tells

We set o� with the concept of comparison. Seemingly a trivial concept, and still an
obstacle for pupils, when they meet word problems where comparisons are involved.
Nowhere (in any textbook) I can find an in-depth analyse of the meaning and the
consequences of comparison. The main road o�ered, to an understanding, is paved
by myriads of examples.

The first thing to notice is that the answer to a (numerical) comparison comprises
both a number and an operation. The latter is more or less “hidden” in the way
we formulate the answer. Maybe we can accept that ‘times’ in the statement “One
foot is twelve times bigger than one inch”, is an operation. But what about the
statement: “One foot compared to one inch is eleven inch more”? Or: “Three pounds
are two pounds less than five pounds”. Some acquaintance with Latin helps to find
the operations in disguise. ‘More’ says ‘plus’ in Latin and ‘less’ says ‘minus’! For
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convenience I introduce a symbol for ‘compared to’ – I suggest ‘◊: :’ – and write
the last two comparisons as “1 foot ◊: : 1 inch = +11 inch” and “3 pound ◊: : 5 pound =
= ≠2 pound”. Here the plus and minus sign informs whether ‘more’ or ‘less’ applies.
(Hence less need for words.)

In the same manner we can write “1 foot ◊: : 1 inch = ·12” for the first compara-
tive statement above. Apparently comparisons can be made with di�erent methods:
an “additive” and a “multiplicative” one. To stress the di�erence, you may use
the symbol ‘•+’ for the latter comparison and write “1 foot •

+ 1 inch = ·12”. The
converse comparison is “1 inch •

+ 1 foot = /12”. Here ‘/12’ can be regarded as an
‘unit fraction’ (in Swedish: stambråk).

If this were all that there was to it, this would have been of minor use. However,
such elements as ‘+11’, ‘≠2’, ‘·12’ and ‘/12’, have a meaning on their own. They
are more but mere abbreviations for words. For a while, we leave comparisons and
pay our attention at elements of this kind.

Introduction of bound signs in integrated elements

It is a common notion, that an expression like 6 ≠ 2 + 4 can be rewritten as
(+6) + (≠2) + (+4) (or as 6+ + 2≠ + 4+), where the parentheses enclose positive
and negative numbers. The problem is that those “numbers” have ambiguous inter-
pretations to real-world situations.1• The purpose of using parentheses, is to rule
out subtraction and make the commutative and associative law apply.

There’s another possibility of interpreting (+6) and (≠2), but as positive and
negative numbers. That is as an “increase by six”, and a “reduction by two”, re-
spectively. In stead of ‘increase’ I will use the term ‘addition’, not in the confined
mathematical sense, as it is known to us in Scandinavia, but in the more eve-
ryday sense, well-known to native English-speaking people. That is to say: here
‘addition’ © ‘increase’.

With (+6)+(≠2)+(+4) interpreted as a collection of additions and reductions,
the perspective can change from having “numbers submitted to operations” to
having “operational elements that compose”. This change is crucial. As the former
“numbers” are substituted for ‘operating elements’ like additions and reductions,
the intermediate plus signs reduce in significance. They turn from active operations
to passive signs for composition. As such, they can be omitted. This suggests we
convert (+6) + (≠2) + (+4) into +6 ≠2 +4. Those new number elements, supple-
mented with what I denote ‘bound’ (appendant) leading signs, obey with ease the
commutative and associative laws. E.g. +6 ≠2 = ≠2 +6, that is: no matter what
order additions and reductions may come.

How then, to handle parentheses in the associative law? In expressions, fully
equipped with parentheses as in ((+6) + (≠2)) + (+4) = (+6) + ((≠2) + (+4)), the
law works well, but what about “(+6 ≠2) +4 = . . . ” ? Neither +6(≠2 +4), nor
+6 ≠(2 +4) will do the thing. As the purpose of using parentheses is grouping, and
this now is directed at irreducible elements of change – not at numbers to be com-
bined by operations yielding new numbers – we need another kind of parentheses
submitted to that new kind of grouping. For reasons to be explained later on, the
natural choice is ‘square brackets’. A grouping like [+6 ≠2] yields, not a number,

1• Some take this diversity for an advantage. Not so done by pupils. They often nurture an
aspiration for single interpretations, to make life easier.
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but a new element of change: [+6 ≠2] = +4. By using such square brackets, the
associative law works and will easily be understood: [+6 ≠2] +4 = +6 [≠2 +4]
i.e. [+4] +4 = +6[+2], where the latter (redundant) brackets surrounding sing-
le ‘changes’ are used only to highlight their origin. In plain words: the order of
grouping (additive) changes doesn’t matter.

The abstract concept of negative numbers, with one unique interpretation, does
have some quite diverse interpretations into real world. Although this is not the
main issue for this essay, subsequent sections will elucidate on the matter. The
basic notion for “negative number” (or rather “minus term”) will, in this article,
be “reduction”.

Another issue: Operations are said to be binary. Numbers are seen as targets
for operations. So can binary operations really be bound to numbers as if they
were unary? Actually, it’s a matter of choice. (After all, ‘+’ and ‘≠’ are used as
binary as well as unary operators.)

In the established Category Theory, there are “morphisms”, where sample ex-
pressions may be ‘+4’, ‘·4’, and ‘≠1’. Morphisms can readily be combined by
composition. Morphisms change (morph) ‘objects’,1• for example points on a
number line. Moreover, a translation of a point with ‘+4’ (drawn as an arrow
above the number line) is an example of ‘group action’ – in another discipline of
modern mathematics. “Operating elements” are ubiquitous. There are, of course,
mappings that out of necessity must be defined as binary. Most mappings can
be done so, but that does not make it the one and only option.

A binary operation of major importance is composition! That one will be used
here.

Now back to “changes”. It lies near at hand to name those additions and reductions
‘plus terms’ and ‘minus terms’ in conformity with the current designations. Those
‘term elements’ simplify more issues but the mere practise of the commutative and
associative laws. For a start we can have a look at . . .

Order of operations

For expressions, we have “priority rules” stating the order of operations. Without
those rules, we would have to tell the order by means of parentheses. Instead of
(3 · (52)) + (4 ≠ (36/12)) we can write 3 · 52 + 4 ≠ 36/12 applying the priority rules.
Besides using those rules, a prerequisite to omit parentheses is that the associa-
tive law holds. This is commonly neglected. Take an expression like 4 ≠ 3 ≠ 2 + 1.
Only the first one of the five (separable) orders of calculation – illustrated by
((4 ≠ 3) ≠ 2) + 1, (4 ≠ (3 ≠ 2)) + 1, (4 ≠ 3) ≠ (2 + 1),2• 4 ≠ ((3 ≠ 2) + 1) and
4 ≠ (3 ≠ (2 + 1)) – leads to the intended answer. No wonder doing the sums “from
left to right” is a widespread recommendation.3• However, two kinds of problems
soon surface:

• How to compute 4 ≠ x ≠ 2 + 1 “from left to right”?

1• I.e. not (literally) changing an object into another, but rather changing from an object to
another. All in compliance with how ‘mappings’ are to be understood.

2• This one is actually two “cases”, depending on which expression within parentheses that is
evaluated first.

3• N.B. it follows the first sample of orders.
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• How to perform computation shortcuts, as when cancelling the threes in
10 ≠ 3 + 5 + 3, or the x’s in 10 ≠ x + 5 + x, if the only familiar order is
“from left to right”?

Well, by adding still more “rules” (to be memorized), any problem can be settled.
That’s a safe horse, but not the one to be used here.

Now compare this to using “changes”. No more do di�erent orders of composi-
tion make any di�erence: [[+4 ≠3] ≠2] +1 = [+4 [≠3 ≠2]] +1 = . . .
In addition, as the elements are trivially commutable, why not regroup like in
[+4 +1][≠3 ≠2 ] = +5 ≠5 ? An added x does not raise the complexity level:
+4 ≠x ≠2 +1 = [+4 ≠2 +1] ≠x = +3 ≠x. An intervening x becomes no obstacle
to compose remaining changes. A single “3 more” equals the a�ect of the group of
“4 more, 2 less and 1 more” and may replace it.1• The leading sign in each element
tells how the number a�ects the expression as a whole. This is a crucial
piece of understanding.

That, what makes the order ((4 ≠ 3) ≠ 2) + 1 of calculation work, and work the
same as [[+4 ≠3] ≠2] +1 , is that no left parentheses break the bond between
leading sign and trailing number. This too speaks in favour of “bound signs”.
The ordinary use of parentheses for regrouping purposes interferes in a complex
way with the operational structure. (As in (7≠5)+4 = 7+(≠5+4).) Regrouping
of elements using square brackets maintain a stable element interpretation. The
operation used between elements is ‘composition’ that is associative per se, N.B.

Real-world interpretation of terms

Let us have a closer look at the real-world correspondences to terms in expressions.
The trivial interpretation is as additions and reductions. What has to be stressed
upon is that in abstract expressions, this is the only conception of terms – they
express additions and reductions in some common abstract unit.2• There is yet
another interpretation in real life. To make my point, I go back to antiquity.

The ancient Greeks observed that the only possible way to relate two quantities
(–flÿ◊µoÎ – an amount of units) was to add or subtract them, provided they had
a unit in common. The Greeks only recognised numbers as showing the magnitude
of some phenomenon: a number of feet, barrels, hours et cetera. The magnitude
represented a quantity. Only magnitudes with the same unit could be related.3• One
way of relating was, so to say, to “compose” quantities by adding or subtracting
them.

Another way was to compare di�erent pairs of (multiplicative) relations. They
observed that 12 inch relates to 3 inch the same way 20 inch relates to 5 inch. If
the two relations were “the same”, they were said to be analogous; we had an
analogy.4• The fact that 20 is 4 times greater than 5, was expressed as (with u
for some ‘unit’) “20 u is to 5 u as 4 u is to u”. On purpose, I did not write ‘1 u’,
as the Greeks didn’t consider ‘1’ a number – ‘1’ was the unit itself. One unit is

1• This simple kind of reasoning is not accessible for quite a many pupils. When they become
familiar to it, they show reactions like relief and inspiration. The reasoning can easily be practi-
cally experienced by learners via hands-on materials.

2• Long since, already Aristotle pointed out that a unit can be abstract.
3• Their thinking alone, would demand for a lengthy essay to be fairly described. This is the

short-short version.
4• Greek logos = relation, ana- = the same. The ‘logos’ was the ‘ratio’ relation.
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the unit, they reasoned. Nowadays we write “20 : 5 = 4 : 1” or “20 : 5 :: 4 : 1”.
All calculations corresponding to multiplication and division were performed via
“analogies”, but enough for that.

The statement “When relating (composing) quantities, the only operations to per-
form on them are addition and subtraction”, have a converse: “The only things
that can be added or subtracted are quantities”. (Alas, this cannot be inferred in a
few lines. The reader may accept this as an unproven postulate.) Well, how then to
relate this to additions and subtractions? The abstract terms are meant to reflect
changes. There is a frequent misconception that expressions mirror some course of
events in real life. That is not so. The terms in an expression no more than mirror
how the quantities in reality contribute to compute the answer to a specific posed
question.

To make my point clear, let us imagine the scene of an empty bench. At 13:45
three people sit down. At 13:55 another two join. That makes them five. At 14:10
four of them leave. Now there is one left. At 14:15 the last one leaves.

Here are two samples of all possible questions to pose.

• How many more leaves at 14:10 than arrives at 13:55?
This is computed by 4 ≠ 2 = 2. Here we subtract the people that arrived
(= ‘more’) and those who left, corresponds to a “positive number”.

• Given that there are five people on the bench at 14:00 and two arrived at
13:55, how many were they before 13:55?
This is computed by 5 ≠ 2 = 3. Here the 5 rightly is a positive number, but
once again we subtract with the arrivals.

Those examples might have shown my point. The idea of “contribution” is crucial
when to perform an interpretation from reality to an abstract expressions. It also
leads to the second interpretation of terms. The following reasoning may show that:

How do three people and two people contribute to the number of people on the
bench at 14:00? The answer is evident: they both add to the number of people!
Seen through the “glasses of the contribution idea”, all quantities (subject to plain
composition) correspond to plus terms. They add to the result. Thus, a quantity
cannot be negative.1• However, the contribution to a computation can be negative
as well! So if Kim loses weight from 120 pounds by 7 pounds, the computation of
the new weight can be written as +120 ≠7 = +113, where +120 is the quantity
“before”, ≠7 is the quantity change and +113 is the quantity “after”.

To conclude: positive terms can represent quantities or changes in quantity, whe-
reas negative terms only represent changes.2• In its abstract general sense “change”
merely depicts relations. In real life terms are associated with quantities. Terms
are coherent (integrated) elements, that obey the associative and commutative laws
with ease. Grouping and regrouping turn trivial.

Reality structured with the RAY model

As the next step to close in on comparisons, we have a look at the RAY model.
The letters stand for Root or Reference (= origin value), Alteration (= change

1• This was why the resistance to negative numbers was so fierce when they were introduced –
nothing in real life could have a negative size.

2• I leave out the topic of “directed quantities”.
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value) and Yield (= result value). The model simply states that a Root subject to
an Alteration results in a Yield.
For example: +5 kg ≠≠≠≠≠æ+3 kg +8 kg follows the pattern of R ≠≠æA Y.
Here R = +5 kg and Y = +8 kg are quantities and A = +3 kg a quantity change.
Writing the alteration over an arrow, emphasizes its role as an intermediate3•

between the “before” (R) and “after” (Y) component. Evidently, this models mathe-
matical events in real life. In most arithmetical (single-step) computations, the
values involved divide into the three categories of RAY. The need to perform a
computation arise when two values are known and the third is sought for. The
RAY model o�ers a structure to the three constellations that the two known va-
lues and the sought value can form. The first two are, built on the example above,
the following:

F. Forward computation R ≠≠æA ? e.g. +5 ≠≠≠æ+3 ?
Problem illustration: “A dog weighs 5 kg. After half a year, it weighs 3 kg
more. What is its weight then?”

B. Backward computation ? ≠≠æA Y e.g. ? ≠≠≠æ+3 +8
Problem illustration: “A dog weighs 8 kg. It weighs 3 kg more than half a
year earlier. What was its weight then?”

Evidently, the last problem is solved by +8 ≠3 = +5, but why does the altera-
tion have to be reversed? The answer lies in the “forward alternative” figure. It
demonstrates (by means of an arrow), that the alteration is applied on a value – a
starting point – that is a root value R. In the B alternative, the only value known
to apply the alteration on, is the Y value. However, in order to apply A on Y, the
direction of the arrow has to be reversed. This is apparent from the figures above.
Reversing the direction of the operation is coupled with reversing the operation
itself. The RAY concept forwards the idea by help of the figure

?
+3≠≠≠≠≠æΩ≠≠≠≠≠≠3

+8

where a reversed operation (‘≠3’) accompanies the reversed lower arrow.

This mutual dependence between an operation and its direction, can easily be
demonstrated to pupils and trained. I believe the reader can imagine how this
can be achieved in practise.

How then, to transfer those alteration diagrams into ordinary expressions? Well,
by applying the principle that an alteration follows after the value to be altered.
For the “forward example”, we write +5 +3 = +8. For the backward example, we
write +8 ≠3 = +5, as the ‘≠3’ alters ‘+8’, which is evident from the direction of
the arrow.

Many pupils experience that problems, with this kind of reverse reckoning, are
di�cult to grasp. In the absence of a model like RAY (and thereby explicit
instruction on how to identify the ‘A’ component that needs to be reversed)
the pupil is left to her intuition as the only means to manage the problem.

3• I.e. a mapping.
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The choice to use the reverse operation becomes (unless equation techniques are
used) more of an immediate choice, based on intuition. The reasoning, if any, is
a reconstruction afterwards.

Separate inversion operator

The use of (operationally) integrated elements, with explicit operations, clears the
way for directing inversions towards operations instead of numbers.1• As an inver-
sion of operation becomes an operation on its own, there is motive for introducing
a separate operation, reserved for this single purpose. I suggest ‘ S’ to be a general
symbol for inverse operation. Using the RAY model we now can write . . .

forward computing as RA = Y

backward computing as R = Y SA (or Y SA = R)

When solving the problem above we can write:

? +3 = +8 =∆ ? = +8 S+3 = +8 ≠3 = +5.

If we want to reverse an operation performed, in theory (abstract algebra), we
cannot do that directly. The reason is that in group theory, a group is about one
operation acting on a set of elements. Accordingly, subtraction cannot be the one
operation, since it does not comply with the associative law. So how to reverse
the adding of 3 to 5? Well, in theory, by adding the inverse of 3 with respect to
addition. The converse to 5 + 3 = 8 will be 8 + (≠3) = 5. Here the number is
inverted. However, as no one can comprehend how a group of eight people can
be reduced by adding “three negative people” (however they might look), this is
explained to be the same as subtracting, i.e. reducing, by three people. (It can be
questioned whether something impossible can be “the same” as something quite
natural.)

All the line, reversing (inverting) operations is simpler to comprehend. Com-
pare using S/3 = ·3 instead of (3≠1)≠1 = 3 or 1/1/3 = 3. Parallel the use of

S≠5 = +5 to that of ≠(≠5) = 5. Complex derivations, of how to create and
calculate inverses, become superfluous. Explicit knowledge of opposite operation
pairs will do.

Another point is that using subtraction to create “additive inverses”, and divi-
sion to create “multiplicative inverses”, obfuscates the real-world structure of
comparisons and backward computing. (The purpose not being to ‘subtract? or
‘divide?, but to reverse operation.) Above that, it adds an extra di�culty, as
a subtraction by a number must be converted into a negative number, before
an outer “subtraction” can be applied on the expression. Likewise, to perform a
division of an expression holding a division by a number, the number must be
converted into its inverse (with respect to multiplication). Those manipulations
have no correspondences whatsoever in real-world, when we solve problems where
inversions occur in the solution. Unlike this, direct inverting of the operations
themselves, reflects the structure to be understood.2•

1• “Operation” has a dual reference to real actions and to symbols in expressions. You may tell
which one by saying ‘reverse an operation’ or ‘invert an operation’, respectively. By substituting
‘invert a number’ for ‘invert an operation’ the established language is maintained.

2• In abstract algebra, the use of inverting operators (≠ and ≠1) complies better with the
structure of comparisons.
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Another view on computing ‘change’

Now we are set to attend to the third and last constellation that the known and
sought values in RAY can form. It looks like R ≠≠æ? Y. For instance: +5 ≠≠æ? +8.

In the “dog example”, the problem can read:
“A dog weighs 8 kg. Half a year earlier, it weighed 5 kg.
How much has it gained in weight?” (a)

The question has some alternatives as . . .
“How much less did it weigh then?” (b)
“How much more does it weigh now?” (c)
“How much does it weigh now compared to half a year earlier?” (d)
“How much did it weigh half a year ago compared to now?” (e)

Perhaps your attention were drawn to the words ‘less’, ‘more’ and ‘compared to’?
The two first words hint at we are computing an alteration (change). This implies
that a comparison is performed. Only the last two question alternatives, make the
comparison stand out clear. Moreover, they shift the responsibility to judge the
“sign” (more or less hidden in ‘more’ and ‘less’), on to the pupil.1• The RAY mo-
del helps to sort things out. As the answer to a comparison tells how to change a
reference value (root, R) to the value, which is to be described, it follows from the
formula R ≠≠æA Y that Y SR = A. (In the next section we see how the ‘◊: :’ compa-
rison yields an ‘ S’ inversion.) Applying that on the last two question alternatives,
we get . . .

for (d) question: +8 ◊: : +5 = +8 S+5 = +8 ≠5 = +3, i.e. “more”.
for (e) question: +5 ◊: : +8 = +5 S+8 = +5 ≠8 = ≠3, i.e. “less”.

Observe, that the order of elements in the comparing expression, strictly follows
the wording (order) of the comparison.

When words like ‘gained’ in (a), ‘less’ (b) or ‘more’ (c) are given in advance,
the pupil does not need to reflect on the structure of the comparison. The order of
calculation will always be “the greater number subtracted by the lesser number”.

In the end, this lack of understanding strikes back. To get the sign right, as when
calculating the slope of a line, an ability to apprehend a direction in comparisons
is helpful. It is my experience, that this notion of “direction” seldom is accessible
to the pupils as a working knowledge.

The fact that the comparison can be calculated by using the inverse of the root
(R), can, but of course, be stated as a rule and lent credit to by cases. Although,
the apprehension that a comparison leads to the calculation of the A component
in RAY, gives us another option.

The two-step method for computing ‘change’

To search for the A component means to search for what turns R into Y. It takes
two trivial steps to arrive at Y. Firstly, we cancel R by applying SR. Secondly, we
append Y itself. Altogether we have that R [ SRY] = Y.

1• Mind there is a direction in the comparison!
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Example: Y ◊: : R = +8 ◊: : +5 = [+8 S+5],
since +5 [+8 S+5] = [+5 S+5] +8 = +8.

Comparisons where “negative numbers” (i.e. reductions) are involved, don’t di�er
in complexity level.

Example: ≠7 ◊: : ≠2 = ≠7 S≠2 = ≠7 +2 = ≠5, that is: “five less”.
Interpretation: A reduction of 7 makes (something) reduce 5 more, than a reduc-
tion of 2. Quite obvious.

Here is a suggestion on how composition of terms may be learned: Perform the
“changes” involved, on a positive quantity of su�cient size (which may be zero). A
comparison between the size “before” and “after” the changes have been applied,
reveals the total change. This is a winning concept in didactical situations. It is
easily demonstrated by help of hands-on materials.

Example: Apply [≠7 +2] on +10. The result is +5. Finally, as +5 ◊: : +10 = ≠5,
this implies that [≠7 +2] = ≠5.1•

I name this the “two-step method”. In the world of arithmetical symbol expressions,
this is no new phenomenon. The equation ax = b has the solution ba≠1, 2•where
you can identify ba≠1 with Y SR. The (possible) novelty is twofold:

1. An understanding of how to reason about comparisons in real life (where RAY
is helpful).

2. A simplified universal method on how to construe the “inverse” by means of
‘ S’. (There is more to this.)

A more pictorial view of the two-step method can be obtained by starting from:

+a +aΩ≠≠≠≠≠ +0 +b≠≠≠≠≠æ +b

This shows how the quantities +a and +b are produced from a common origin in
the center – the neutral quantity of +0. To compare +a with +b, is the same as
to find what transfers +b into +a. By reversing the right arrow (and inverting the
operation), you arrive at the two steps to take:

+a +aΩ≠≠≠≠≠ +0
S+bΩ≠≠≠≠≠≠ +b

The reason to invert the operation for the comparison reference value +b, becomes
obvious. Other “intermediate values” than +0 are possible. As to compare +402
with +397, the intermediate +400 can be an option. Incidentally, in Davydovs con-
cept writing diagrams have proved to help learners get a “picture” of the problem.

More on scalar interpretations

To gain full benefit from the RAY model and the two-step method, one has to
expand on the issue of real-world correspondences to integrated elements. So far
we have come to know that . . .

The terms correspond to quantities with units,
and to some extent that . . .

1• With hands-on materials, the obvious “circle” in this reasoning is broken, as the material
provides the answer to the comparison, not yet another expression of a similar kind.

2• Provided it is commutative, as holds for basic operations.
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The factors correspond to relations between quantities.
Thus ‘·3’ demonstrates the relation between a quantity of, say, +3 m and the unit
+1 m. It also illustrates the relation between an infinity of other pairs of quantities
like +15 s and +5 s or +0.189 kg and +0.063 kg. As the concept ‘factor’ is defined
to refer to multiplication, the notion of ‘scalars’ seems to agree better to the use
of both of the two opposite operators, as in ·5 and /5.

In abstract algebra, rational numbers are defined using the ‘equivalence class
concept’. Pairs of integers e.g. (a, b) and (c, d) are said to be equivalent if ac = bd.
(This is the old safe “golden rule” for proportionality in a modern outfit. Other
equivalence conditions can be stated, but this is the one of interest for now.)
Pairs that are equivalent all represent “the same” relation. Pairs equivalent to
(a, b) form an ‘equivalence class’, denoted by [(a, b)] or [a, b]. The equivalence
class [(3, 1)] will correspond to the scalar [·3] as . . .

Û The identity scalar ‘·1’ can be regarded as to implicitly provide the number
‘1’ in the pair.

Û The reference to multiplication is explicit and can be defined as to address
the equivalence condition above.

Hence [·3] can be considered an equivalence class. It comprises the infinite many
relations between pairs of quantities. N.B. that the use of square brackets in
equivalence expressions complies with this interpretation of [·3]. In the same
manner [/5] represents the equivalence class of [(1, 5)] (number order reversed).
Finally [·a/b] represents [(a, b)] = [(a/b, b/b)] = [(a/b, 1)].

In the ancient Greek mathematics (due to Euclid), the relations between quan-
tities (or ‘magnitudes’) always were expressed as pairs of quantities. (In a way,
this is a fundamental kind of view to comprehend.) Their “analogies” have its
modern parallel in equivalence classes.

On combining quantities and scalars

In order to combine quantities and scalars, we have to settle on two matters.

• The scalar primarily shows the relation between quantities. In practise, the sca-
lar also can be interpreted as showing a “change” of one quantity into another.
There is no contradiction between those two interpretations, but the first one
has to be stressed upon. (I leave out the arguing in this matter.)

• According to the RAY model, a scalar is both the answer to a comparison
between quantities and an element of quantity transformation (showing the
relation). This duality of scalars is essential to recognize.

One more word about relations. – In symbol expressions, all signed term elements
can be regarded as to show relations between quantities. A term representing a
quantity, shows the relation to a zero quantity, +0. As already mentioned, all
signed scalars show relations between quantities. A scalar being a measure,1•

shows the relation of a quantity to the unit quantity, +1.

The comparison of quantities, yielding scalars, was ascribed a symbol of its own:
‘•+’, e.g. Y •

+ R = +18 •
+ +6 = ·3 . Here, the two-step method is employed to

1• Observe, that ‘measure’ says ‘mätetal’ in Swedish.
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construe the answer as follows: +6 [/6 ·18] = [+6 /6] ·18 = +1 ·18 = +18. From
this it is evident that [/6 ·18] = ·3 holds the answer to the comparison, as it sup-
plies the transformation needed to change +6 into +18.2•

The “pictorial view” of the two-step method may set o� from:

+18 ·18Ω≠≠≠≠≠ +1 ·6≠≠≠≠æ +6

Here the unit +1 is used in the center, as it makes the factors above the arrows
trivially equal to the measures. The next step is to “go from +6 to +18”, which is
accomplished by means of:

+18 ·18Ω≠≠≠≠≠ +1
S ·6Ω≠≠≠≠≠≠ +6

Other intermediate quantities may be used as in:

+18 ·6Ω≠≠≠≠ +3
S ·2Ω≠≠≠≠≠≠ +6

Moreover, this gives an alternative way to infer fractions (see later section) and to
motivate why di�erent fractions can work the same way. Still another example:

+5 ·5Ω≠≠≠≠ +1
S/3

Ω≠≠≠≠≠≠ +1/3

. . . demonstrates the comparison, that conventionally is written as 5/ 1
3 . (The reader

may picture the steps before and after.) The division by a fraction adds an extra
di�culty to be unraveled. In contrast, inverting a division is no more di�cult than
inverting a multiplication.

Diagrams as those above combine well with the use of e.g. cuisenaire rods.1•

Firstly, the pupils learn how to reason about comparisons and other matters
by help of the rods. Next they learn to write diagrams to show the structure.
Lastly they learn how this is written in mathematical expressions. Each step to
be settled on, before advancing to the next.

Observe that the scalar transformation is written after the quantity to be trans-
formed. E.g. +24 /8 = +3; +2 ·5 = +10 (and accordingly +10 •

+ +2 = ·5). Hence
all scalars need to have prefix sign notation.

For a ‘unit fraction scalar’ like ‘/5’, only a prefix division operator is possible.
For historical and linguistic reasons an irregular use of the multiplication sign as
“postfix” frequently occurs. (That is: the ‘multiplicator’ is put before the ‘multi-
plicand’, also referred to as ‘premultiplying’.) This can become quite convenient
at times, but here only the prefix notation will be used. (Also referred to as
‘postmultiplying’.)2•

Naturally, a leading quantity can be followed by many scalars, but (without
using parentheses) only one leading quantity submits to its scalar successors.
E.g. +3 +5 ·2 = +3[+5 ·2] ”= [+3 +5] ·2 = +8 ·2.

This kind of relation is met with in di�erent shapes in abstract algebra. E.g. vec-
tors can be transformed by scalars. (Vectors also can be composed, i.e. added.)

2• Pupils experience this model as quite conceivable and straightforward.
1• Those are coloured rods of di�erent lengths. They must only depict quantities, never scalars.

It is important to discriminate between the two.
2• I leave out the lengthy discussion, needed to fully justify the prefix preference, and to explain

why and when postfix notation is an option. Some advantages with the ‘prefix’ alternative may
still become apparent. After all, it’s extensively used.
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A general concept is ‘group action’, where a group of elements (here: scalars) by
means of its operation, transform elements in another set (with another opera-
tion, if any at all). Quantities transformed by scalar elements, will be an example
on ‘group action’.

When I ask pupils to combine two scalars into a single one as in x ·12/3 = x ·a (a is
asked for), they get puzzled.1• They even hesitate about that x · 12/3 will equal
x/3 · 12 (only reversed order of scalars). Apparently they have never been asked
to compose “scalars”. Such shortcomings lay the ground for trouble with algebra.
Still, composition is easily understood, if the transform starting from ‘+1’ come
into use:

In order to compose the scalars ·3 and ·2, start from +1[·3 ·2] = [+1 ·3] ·2 =
= +3 ·2 = +6. Then pose the question “What single scalar turns +1 into +6 ?”.
Apparently ‘·6’ does the work, as +1 ·6 = +6. (Even this simple approach will
turn out a “new way of thinking” to quite a lot.)

As even other combinations of elements (other than quantities and scalars) obey
patterns very similar to those studied above, I introduce two concepts in order
to ease generalization. The elements that perform the transformations (show the
relations), I call agents. They act upon an opening element. The opening “target”
for the agents I denote anchor, as it constitutes a fix starting point for the agents
to act on.2• They are, so to say, “tied up” to an anchor. This anchor is supposed
to di�er from the agents in some feature(s), e.g. kind of operation.

The anchor—agent relationship comes about in many shapes. In abstract algebra
we have ‘group action’. In education we meet concept pairs like ‘multiplicand—
multiplier’ and ‘dividend—divisor’. The multiplicand and dividend is always de-
monstrated as something with a size (and measure) that is subject to a (scalar)
change by a multiplier and divisor respectively. It stands out clear that this has
its exact correspondence in an anchor (target quantity) and an agent (scalar at
work). The advantage using the anchor—agent concept is that it emphasizes a
general kind of relation, equivalent to group action. The concept is applicable to
powers (base—exponent relation) and yet another relation, both to be covered
later on. This follows the principle of “Ockham’s razor”. It is rational to avoid
an excess of concepts. (As in the ‘multiplicand’ family of concepts.)

The two kinds of division

The anchor and agent concept help to supply a theoretical setting to the didactical
concepts of partitive and measurement division. In theory, we have but one kind of
division, here exemplified by 12/3 = 4. In real world we can di�erentiate between
two kinds of division. The partitive division follows the idea of the dividend—divisor
relation. With bound operations we can interpret this as +12 /3 = +4, where +12
and +4 are magnitudes having a unit. Measurement division, on the other hand,
is about computing a relation – “How many pieces of size 3 is contained by (goes
into) the size 12 object?”. The “division” is between measures of objects. The RAY
model reveals that this follows the pattern of a comparison. The calculation will
be +12 •

+ +3 = ·12 S ·3 = ·12 /3 = ·4. Here we make two observations.
1• Despite I don’t use variables! It can look like 5 ·12 /3 = 5 , where the contents of the

left hand box is to be substituted for one number and one operation in the right hand box.
2• To be precise: ‘opening’ = ‘leading’ = positioned first.
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1. The quantities of +12 and +3 have the measures of ·12 and ·3, which is an
important thing to notice. It is not the quantities (with units) that we “divide”,
but their (scalar) measures. This is why we receive a scalar as an answer.

This idea was stressed upon by the Oxford professor John Wallis, in the 17th

century. Due to Wallis, if the “genus” of the (quantity) number was left out, this
allowed for scalar operations to take place between (remaining) “pure numbers”.
That is to say that “pure” scalar measures were separated from the quantity unit
(“genus”). At that time the Euclid notion of numbers as quantities was preva-
lent, and the only ways permitted to compose quantities was to add or subtract
them, or setting up analogies, i.e. equalling “ratios” between them. The multi-
plications and divisions that accompanied analogy computations, was regarded
operations and did not infer that there were any independent numbers of the
kind we nowadays identify with scalars. Wallis made way for this new idea.

2. The answer is a scalar. The size +12 holds the size +3 “four times”, that is
“·4”. This is quite di�erent from ‘+4’ that tells the size of a third of size +12.

By means of bound operations we can make the di�erence, between the two ways
of perceiving division, visible in all aspects.

Frequently, the measurement division is written as a division between quantities.
The quantity feature is apparent from the units supplied.
For example: 10 apple

2 apple = 5 or, as I would put it: +10 apple
+2 apple = ·5

The idea of ‘comparison’ is so much more general than the idea of ‘containment’.
As a matter of fact, most divisions deal with comparisons in some way. I propose
we substitute ‘measurement division’ for ‘comparison division’. One advantage will
be that the expression follows the wording order: “How much is 12 cm compared
to 3 cm?” is written “+12 •

+ +3 ” and so on. After some practise, one can go
directly for the ‘·12 /3 ’. The idea that ‘measurement division’ computes a kind
of measure, can be substituted for that a measure is computed by comparison
between quantities (possibly to the unit). Another advantage shows when dealing
with fractions, as will be seen.

‘Level’ – another real-world correspondence

Not only quantities can have a unit. We use numbers to denote di�erent kinds
of states or levels. I will use the term ‘level’ throughout. Examples may be water
level; temperature; position (in a coordinate system); direction (e.g. in degrees );
altitude (above sea level); date; point of time et cetera. Their measures all share
the property of having double references. An ordinary quantity needs to reference
nothing else but a unit. By comparing to the unit, the measure will be set. That
will not do for ‘levels’. A second reference to a “zero state” will be nescessary.

Example: To determine a number (measure) for the altitude of a mountain, you
have to settle on a zero altitude, usually chosen to be the sea level. In southern
Sweden the “highest” mountain is ‘Tomtabacken’ (“Brownie Hill”), 378 m above
sea level. I you go there, you won’t be impressed – it is but a small hill rising
about 20 m above the surroundings. On the other hand is Mauna Kea on Hawaii
said to be the worlds highest mountain – measured from the nearby sea floor it
rises from. It is apparent that the measure of “altitude” is a matter of how to
choose, not only the unit, but also the reference level.
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With a reference level established, the combination of the measure and the unit
tells the “distance” from this level.

A watch tells the “time elapsed” from midnight on. A coordinate tells the distance
(and direction) from the origin (of coordinates).

The “double reference” is not the only feature of levels. Another is that they cannot
compose. (e.g. get added). “What would ‘4th of July’ + ‘14th of July’ add up to?
What is the meaning of the sum of two positions? (Ulf Persson wrote an article on
this matter in ‘Nämnaren’ no 2, 2010.)

As those level elements cannot operate on each other (= compose), they will
not be equipped with a prefix operator. This will help to distinguish levels from
quantities in expressions. The quantity [+12 h +15 min ] di�ers from the point of
time 12:15 (no leading ‘+’). The length ‘+3 m’ di�ers from the altitude ‘3 m’.

The mechanism of creating level values can be demonstrated by 0 m +3 m = 3 m,
or simplified as: 0 +3 = 3.1• Here 0 m is the reference level. This and the quantity
+3 m form an anchor—agent relation.

This kind of mathematics is established. It can be found in Lie algebra, topolo-
gies, and so on. It is an example of ‘group action’.

Some significant features of levels are . . .

• Their “double reference” feature;
• Their lack of operation. And accordingly . . .
• Their confinement to work as ‘anchors’, not as agents.
• They can indeed be compared! (This being the only “operation” between levels.)

A remark on the use of ‘◊: : ’ and ‘•
+ ’: The ◊: : symbol is used for comparisons bet-

ween agents, producing an agent of the same kind as an answer. (It may also
be used as a general comparison symbol.) The •

+ symbol denote comparisons
between “anchors”, producing a corresponding agent. Moreover, this agent is
intended to show the “numeracy” of the reference anchor. (This rules out using

•
+ for level comparison. There ◊: : is used.) This restriction makes •

+ more useful,
e.g. +5x3 ≠15x •

+ +x2 ≠3 = ·5x. Such an expression can be quite accessible to
learners, compared to a quotient between polynomials.

To infer how comparison between levels works, we set o� by taking a look at how
quantity comparison could be performed:

The comparison +18 •
+ +3 = ·6 can be outlined as an “extraction” of measu-

res (i.e. scalars) from the quantities, followed by a comparison between scalars. As
+18 = +1 ·18 and +3 = +1 ·3, where ·18 and ·3 are measures, we substitute the
comparison between quantities for its scalar equivalent: ·18 ◊: : ·3 = ·18 S ·3 = ·18 /3 = ·6.

Now we apply these patterns on ‘levels’. To perform the comparison 7 ◊: : 5, we
begin by extracting the enclosed “inner” quantities. As 7 = 0 +7 and 5 = 0 +5, the
quantities will be +7 and +5. Then we have that +7 ◊: : +5 = +7 S+5 = +7 ≠5 =
= +2, telling that 7 lies 2 (unit) steps from 5, in the positive direction.
From comparisons of this kind, level values can be ordered. Nevertheless, levels
have no inherent “size” attribute. The position 7 is not “greater” than the position
denoted by 5 on the number line, it only comes “later” than 5 in the order.

1• . . . by regarding the unit as abstract and as such, implicit.
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The comparison of levels follows the usual pattern, that an agent tells how to
transform (translate) the R anchor into the Y anchor. From 5 +2 = 7 we see
that 7 ◊: : 5 = +2. This can be demonstrated on a number line, where levels are
coordinates and quantities are depicted as arrows between coordinates.

We can see that levels mathematically work very di�erent from quantities. This
is established knowledge used in e.g. topology. Nothing is told about those ‘level’
features in compulsory school education.1• Textbook authors even compromise
how levels work, e.g. by multiplying temperatures with scalars. Typically, negati-
ve numbers are exemplified by “levels” like temperature, altitude and coordinate
points. As a next step, it is demonstrated how to add, subtract, multiply and
divide negative numbers, in spite of the fact that a pair of real-world “levels”
cannot be subject to a binary operation. So what do the pupils learn from those
examples? Are they of any help? The only operation a level submits to, is a
“translation” to another level by means of a quantity.

The concept of level elements complies with the structure given by the RAY model.
The anchor and agent concepts help sorting out the component roles.

Powers

I will not go into details about powers. Only a short survey of how the RAY model
and anchor/agent concepts are applied will follow.

• The power base works as an anchor, and is a scalar.

• The exponent is an agent of its own kind. The ‘̂ ’ (hat) is used as an operator.

• Following the pattern of 5 · 3 = +5 ·3 = +5 +5 +5 = +15, we have that
53 = ·5 ˆ3 = ·5 ·5 ·5 = ·125.

You may say that scalars “repeat” quantities and exponents “repeat” scalars.
This must not be confused with “repeated addition” or “repeated multiplica-
tion”. For those concepts, what is being repeated is frequently mistaken to be an
operation, not an element.

• The comparison ·125 •
+ ·5 yields ˆ3, as is obvious from ·5 ≠≠≠æˆ3 ·125.

This corresponds to computing the “five logarithm of 125”. (The comparison
·125 ◊: : ·5 yields ·25, N.B.)

• The opposite operation to ‘̂ ’ is denoted ‘ÕÕ’ and returns a root. Accordingly, if
·x ˆ3 = ·125, then ·x = ·125 Ŝ 3 = ·125 ÕÕ3 = ·5, is a solution via “back-ward
reckoning”. Mind that R in RAY stands for ‘root’ or ‘reference’. (Regarding R
a “root” in the RAY interpretation of a power makes sense.)

• The associative law is applied as [·2 ˆ3] ˆ4 = ·2 [̂ 3 ˆ4] = ·2 ˆ12 , where the
composing of exponents by multiplication, easily can be derived.

• One form of the distributive law applies according to [·2 ·3] ˆ4 = ·2 ˆ4 ·3 ˆ4
in the very exact parallel to [+2 +3] ·4 = +2 ·4 +3 ·4.

1• The “transfer” of university level mathematical insights to compulsory school, seems vanish-
ingly small.
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The other form of the distributive law looks like ·2 ˆ(+3+4) = ·2 ˆ(+3) ·2 ˆ(+4)
or simplified like ·2+3+4 = ·2+3 ·2+4 . Regrettably, treating the theory behind
this is an essay on its own.

• A change of the “inner sign” of the exponent, as between ˆ(≠2) and ˆ(+2) is
coupled with a sign change for the base (anchor), that is

·2 ˆ(≠3) = S ·2 ˆ( S≠3) = /2 ˆ(+3) = /2 /2 /2 = /8.
The transformation ·2 ˆ(≠3) = /2 ˆ(+3) can read “3 less ‘·2’ equals 3 more
‘/2’ ”. Seen as agents working on ·2 ·2 ·2 ·2 ·2 this corresponds to

·2 ·2 ·2 ·2 ·2 = ·2 ·2 ·2 ·2 ·2 /2 /2 /2.
This is perfectly paralleled by

+2 ·(≠3) = S+2 ·( S≠3) = ≠2 ·(+3) = ≠2 ≠2 ≠2 = ≠6,
saying “3 less ‘+2’ equals 3 more ‘≠2’ ”.

Perhaps this gives you a hint on the issue of what I call “inner quantities” in
scalars and exponents, along with their contribution to simplified “sign rules”.
Those are not to be treated upon, more than this in this paper. Here the focus
is on real-world structure. Anyhow, my little “hint” on sign rules might have put
you on the track of seeing that the interpretation of a negative number depends
on what “role” the number plays – does it represent a level, quantity, scalar or
exponents?

On fractions

There’s much to be said about fractions. Only a fraction will be treated here. One
thing is that they form rational numbers, defined as equivalence classes (of the
kind, earlier mentioned). Another is that positive rationals form a group under
multiplication. That hints at that rationals can be associated with scalars.

The main point has already been touched on. A general comparison of type
+a •

+ +b, produces the composed scalar [·a /b] as an answer.
From +1 [·a /b] = +a /b = +a/b = +1 ·a/b, it follows that ·a/b © [·a /b].1• This
interpretation of a fraction, as a combined multiplication and division, is sometimes
referred to as “the operator model”. In a misguided ambition to have but one model
for fractions, the operator model is questioned. On the contrary, it is the basic
notion of fractions. This is why . . .

A scalar can always work as a measure. Just as ·5 in +5 s = [+1 s] ·5 is the
measure of five seconds, so is ·a/b the measure of +a/b. The operator model and
scalar fraction is indeed the basis, as the scalar works as a measure that creates
the quantitative fractions.

Many models for fractions, use quantities in the shape of rectangular or circular
(pie) areas, or stretches with length. To demonstrate 3/4 of a rectangle, it is divi-
ded in four parts, whereof three may be shadowed (or otherwise marked). What
is neglected, is that a mathematical creation of 3/4 of an area is not performed by
means of a ruler and a pencil. It is done by the two operations /4 and ·3. They
are applied on a area being a quantity. Here the language used about fractions

1• The equality ·a/b = [/b ·a] can as well be stated as a definition of a scalar fraction. Observe,
that the unit +1 works as a quantitative anchor to the scalar agent, being the measure.
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set a trap. After having divided ‘the whole’ (e.g. a rectangle area) by four (i.e.
applied /4 on +1 leaving +1/4) we name the part a ‘quarter’. Then we take 3 of
them: +1/4 +1/4 +1/4 = +1/4 ·3 = +3/4.2•

The trap is, that if understanding fractions makes use of quarters, fifths and
other parts as a basis, attention is drawn away from the role of the denominator
to work as a divisor. It reduces into a “nomen” (name) for the part. Only the
multiplicator role of the numerator is properly recognized. Parts will be created in
mind or by practical arrangements, not by division. The parts will be perceivied
as ‘unit fractions’, that is: quantities. (The use of leading +’s, like in +1/2, +1/3,
+1/4 and so on, would expose this property.)

With fractions understood this way, it will be hard to construe the meaning
of 1/3 · 1/4 as you cannot multiply two pieces of a pie, to use a metaphor. When
the pupil is asked to write an expression showing “three quarters of a”, the trap
definitely shuts.1•

Teachers are told in their education, that the ‘operator model’ is not central
and has the draw-back of not fitting in with other models. (Those models seem
to be classified after what kind of real-world object the fraction is applied on.2•

To me, that is not mathematics.)

The RAY model provides the structure needed. The scalar ·a/b is to be under-
stood as [/b ·a] or [·a /b]. It shows the relation between quantities. It is construed
with the two-step method as in +5 ≠≠≠æ/5 +1 ≠≠≠æ·2 +2 implying that +2 •

+ +5 =
= [/5 ·2] = ·2/5. The method and reasoning is, due to my experience, easy to convey
to pupils, with a helping hand from hands-on materials. You can apply a (scalar)
fraction on “a whole”, that is +1, regardless of the unit will be a ‘pie’, ‘square’,
‘glass of water’, etc. It makes no di�erence to apply a fraction on a number of
objects, i.e. +n. In either case the application of a scalar on a quantity yields a
quantity: +1 ·2/5 = +2/5 or, if +n = +35: +35 ·2/5 = +14.3•

When you tell apart representations for quantities and scalars, you make way for
attending the parallel between (concrete) division by a knife, and (mathematical)
division by a number. (The quantitative “pie anchor” is, so to say, submitted to
the operation of a surgeons knife or a mathematicians divisor.)

The interpretation of a/b as [+1/b] ·a manifest the widespread view of the denomi-
nator as a kind of “unit” (telling the “size”) and the numerator as the “number”
(i.e. works as a multiplier). As mentioned before, this leaves out the mere creation
of +1/b as depicted of +1 [/b ·a] = [+1 /b] ·a = +1/b ·a. Indeed, this initial step
is crucial for getting a firm grip on how to manage fractions.

2• Conventionally this is written 1/4 + 1/4 + 1/4 = 3 · 1/4 = 3/4. Here nothing prevents the quantity
property of the (unit) fraction from being overlooked. Mind: things being added are quantities.

1• The division by the denominator will not likely be an active part of the pupils model of a
fraction. How to make four parts of “a” by means of a ruler or by “pie dividing” techniques?

2• The use of a square to model fraction multiplication is considered di�erent from using a
rectangle! Somehow someone somewhere seems to have missed the point.

3• This extensive use of ‘+’ signs (and others) might seem to clutter up the expressions. The
intention of using them is only to make the role of numbers in an expression explicit, and to
facilitate reasonings about numbers and their correspondences in reality. Nothing prevents the
experienced user of mathematics to leave out signs where they seem to be of minor use. The more
complex expressions, the more the need for simplification.
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Composition of scalars

Understanding calculations with fractions is but a part of understanding scalar
expressions in common. How to make a pupil understand a rearrangment like the
following?

1
3 · 5/4 · 6

5 = 5
5 · 6

3 · 4
In 2002 Wiggo Kilborn presented (due to a study) that as many as 42 % of the
pupils in form 9, couldn’t calculate 6

5 /3 ! If the pupils had been able to regroup
the scalars as into 6

3 /5, there would not have been a problem.

To facilitate rearrangements of scalar expressions, one needs to identify what a�ect
each number has on the expression as a whole, with respect to its operation. As
of the expression above, the roles the numbers posess can be demonstrated by
·1 /3 ·5 /4 ·6 /5. (Leading signs, N.B.) After having left out the redundant ‘·1’
and done some regrouping, this equals [·5 /5][·6 /3] /4 = ·1 ·2 /4 = /2.

In parallel with the concepts ‘plus term’ and ‘minus term’, that are useful tools
to classify term agents, we need similar concepts for scalars. I propose we name the
factor ‘·a’ and its converse ‘/a’ a ‘profactor’ and an ‘antifactor’, respectively.1•

Other terms would be possible, for instance ‘sizefactor’ and ‘partfactor’. The
scalar ‘·m’ can be regarded a “measure” of something, as scalars often are. The
signs themselves can read ‘times/part’, ‘pro/anti’ or some other short forms.
Cumbersome wordings like ‘multiplied with’ and ‘divided by’ are not likely to
be used in practise when long expression are read aloud. To avoid “baby talk”
in mathematics, the short forms should be settled on.

Here is a suggestion on how to demonstrate the scalar “roles” in expressions. For
“one-liners” like ·3 ·4 /5 /6 ·7 a consistent use of prefix interpretation of signs
tells the role of each number. For “two-liners” in quotients the interpretation is
straightforward: Above the fraction bar (in the numerator), the a�ect on “the
expression as a whole” is unchanged. An ·a will even in a wider scope (outside the
numerator) work as a profactor and /a as an antifactor. Below the fraction bar
(i.e. in the denominator) the role of a factor will be reversed. Here the fraction bar
(a vinculum) takes on the role of grouping factors and submit those below to an
inversion as by the sign ‘ S’.

·6 ·7 /10
·7 /5 ·3 = [·6 ·7 /10] S[·7 /5 ·3] = [·6 ·7 /10][/7 ·5 /3]

Naturally, a vinculum can be regarded as a “token” for regular division and,
concurrently, may imply some sort of inverting, following less transparent rules.
A subsequent, more transparent and immediate reasoning follows. This can, in its
turn, be used to prove how the division operation can be used to invert factors.

From a theoretical standpoint, the inverting property of division is quite ob-
vious, as division is derived from the basic concept of inversion. (The same goes
for subtraction.) In school mathematics, where division as a concept is brought
up first, the other-way-round inference of the inverting property becomes a dif-
ficulty later on. (This inverting property is introduced for managing comparisons
and backward reckoning.)

1• Naming e.g. /2 a ‘factor’ is motivated by that you cannot tell it apart from ·0.5 when you
deal with coherent elements, composed of an operation and a number: /2 © [·1 /2] © ·0.5.
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Instead, the idea behind why reversing (of operations) is needed in the first
place, should be brought into daylight using the S operator. The use of ordinary
operators for this purpose should be introduced only as a second step.

In e�ect, the role of a factor above or below the vinculum can be derived by means
of comparison. Any pupil can learn that a comparison with the unit quantity +1
works according to +a •

+ +1 = ·a since +1 ≠≠≠æ·a +a. Now use (what I call) the
“trivial fraction” +1/1 = +1. Make it “change” by inserting factors in the nume-
rator and/or denominator. Then determine the overall “change” by comparing the
result with the origin +1.

For example does an /5 inserted in the denominator of + 1
1 yield . . .

+ 1
1 /5 = + 1

0.2 = +5

Then +5 •
+ +1 = ·5 tells that the insertion of /5 made the expression as a whole

5 times larger. The general conlusion will be that an antifactor inserted in the
denominator works as a profactor. The pattern of that factors in the numerator
keep their roles but have them reversed in the denominator is simple to learn
and derive.

With those insights the pupil can perceive 6
5/3 as

·6 /5 /3 = [·6 /3] /5 = · 6
3 /5 = ·2 /5 = ·2/5

The problem of “rearrangement” melts down to identifying the factor roles in
the one expression, and write the other with their roles maintained. The ‘neutral
factors’ ·1 and /1 can be left out or inserted as one pleases. Exercises in rewriting
make room for the pupils creativity, and ease the way to algebra.

Measurement division and proportionality

The correspondence between the functionality of a quotient and a comparison is
obvious:

Y ◊: : R = Y SR = Y
R

As earlier mentioned, the use of a quotient for comparison is often referred to as
‘measurement division’. That is an old notion. The ancient Greeks said that one
quantity measures another if it (due to our speaking:) divides into it. Two thousand
years later John Wallis (Oxford prof.) stated that di�erent kinds of quantities
may be compared by means of a quotient, provided the ratio was between “pure
numbers” without any units or other quantity features.

The underlying reason is that a combination of scalar measures (“pure numbers”)
in a formula shall reflect how one quantity depend on others. E.g. if ‘velocity’
of size +1 is defined as that of a +1 m move in +1 s, then the measure ·v of
velocity will be directly proportional to the strech measure ·s and reciprocally
proportional to the time measure ·t. Accordingly the formula v = s/t is all about
measures, not quantities. The operation “strech divided by time” remains to be
performed.
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Textbook authors often emphasize on the idea, that comparison division is between
quantities, by spelling out the units in the quotient as in

10 m
10 cm = 100 or 35 km

5 h = 7 km/h

Nevertheless, the pupil gains from being aware of that in those expressions, the
vinculum only is a symbol for comparison. That is . . .

+35 km
+5 h = +35 km •

+ +5 h = ·35 ◊: : ·5 = ·35 S ·5 = ·35 /5 = · 35
5 = ·7

Now ·7 is the measure of the velocity !
The expression ‘ ·35 ◊: : ·5 ’ above does what Wallis told us to do: it compares
“pure numbers”.1• Behind all this lies that the relation between the quantities is
the one of proportionality. The relation itself constitutes a quantity – a velocity.
Its measure equals that of the strech traversed during the time unit (+1) measure
(·1). When velocity is constant, strech and time are proportional, implying they
change in step. In our example the factor /5 yields unit time: +5 h ≠≠≠æ/5 +1 h.
Applied likewise on the strech, it yields +35 km ≠≠≠æ/5 +7 km. Now the strech
measure ·7 is the velocity measure, per definition.

The Wallis method is a short cut. Cumbersome proportionality reasonings
are left out and he goes directly for the measure that may be determined from
the strech and time measures in a quotient. It can be questioned wether pupils
shall learn this short cut without understanding the underlying proportionality
reasoning. I have tried and found the “long way round” to be a short cut to
comprehension.

The use of a quotient for direct proportionality actually reflects that two measured
phenomena change the same way.

Example: If the strech 12 m is proportional to the time 5 s (constant velocity),
then a 3 times longer strech is accompanied by a 3 times longer time. If the
quantites are arranged in a quotient, those changes will leave the quotient un-
changed: 12

5 = 12·3
5·3 or, fully featured:

+12 m
+5 s = +12 m

+5 s
·3
·3 = +36 m

+15 s
Written with quantities, the quotient gains from being interpreted to show a
relation, rather than a division. A quotient between plain measures is another
cup of tea. It’s extended like:

12
5 = ·12 /5 = ·12[·3 /3] /5 = [·12 ·3][/5 /3] = 12 ·3

5 ·3
In e�ect: we multiply and divide by the same number, which explains why
the quotient remains unchanged. 2•

Measures for reciprocal proporitionality are usually set up as a product. Here, too,
we multiply and divide by the same number. It looks like:

a · b = ·a ·b = ·a[·c /c] ·b = [·a ·c] [·b /c] = ac · b

c

It becomes evident, why a product is suitable to show reciprocal proportionality.
1• It is, but of course, impossible to figure out “how many times 5 h divides into 35 km”!
2• Understanding connections, thrills pupils.
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To conclude

The RAY and anchor—agent models combined with bound operators comprise
what I call “Change and Comparison Mathematics” – CCM. The concepts lead
considerably beyond what is outlined here.

Among other things: Proportionality and negative numbers become straight-
forward matters. The angle concept can be settled on. Ways to interpret and
generalize complex numbers are pointed at.

Basically, the concepts in CCM are aimed at making it more simple to understand
basic arithmetical structures. This is the CCM raison d’être. There’s no need for
alternative theories like this one, just to make out calculations. What justifies its
existence is the extent to which it clarifies on diverse issues, and does so in a
simple, consistent way, that readily lends itself to be demonstrated by hands-on
materials. This is of major importance, as pupils frequently are able to perceive
how to handle mathematics in practical situations. Almost equally frequent, they
are less able to transfer their insights from practice over to written expressions and
general structures.

Many features of CCM can be found elsewhere, in a slightly di�erent outfit.
There, those features are aimed at solving complex problems and, accordingly,
not well adapted to be conveyed to children. In Russia, the Davydovian way of
mathematical instruction in form 1–3, have several outfits in common with CCM.
This, too, talks in favour of CCM.

CCM lays a foundation, that complies with advanced modern theories, but avo-
ids all their complexities. It is meant to provide a tool to bridge the gap between
abstract symbol expressions and real-world mathematical structures. To my expe-
rience, it does so surprisingly well. Will this be the experience of others, too?


