150 Christer Oscar Kiselman Normat 2/2013
Brüning, Jochen; Ferus, Dirk; Siegmund-Schultze, Reinhard. 1998. Terror and Exile. Persecution
and Expulsion of Mathematicians from Berlin between 1933 and 1945. An Exhibition on the
Occasion of the International Congress of Mathematicians. Technische Universität Berlin;
August 19 to 27, 1998.Berlin:DeutscheMathematiker-Vereinigung,DMV.
Desloge, Edward A. 1982. Classical Mechanics. New York, NY, et al.: John Wiley & Sons.
Ehrenpreis, Leon. 2003. The Universality of the Radon Transform.Oxford:ClarendonPress.
Fenchel, W. 1949. On conjugate convex functions. Canadian J. Math. 1,73–77.
Fenchel, Werner. 1951. Convex cones, sets, and functions.LectureNotes,DepartmentofMath-
ematics, Princeton University.
Fenchel, W. 1983. Convexity through the ages. In: Gruber, Peter M.; Wills, Jörg M., Eds. 1983.
Convexity and Its Applications,pp.120–130.Baseletal.:BirkhäuserVerlag.
Gao, David Yang. 2000. Duality Principles in Nonconvex Systems: Theory, Methods and Appli-
cations.Dordrechtetal.:KluwerAcademicPublishers.
Gesetz zur Wiederherstellung des Berufsbeamtentums.Availableat
www.documentarchiv.de/ns/beamtenges.html.Accessed2018May09.
Goldstein, Herbert. 1950. Classical mechanics.Reading,MA:Addison-WesleyPublishingCom-
pany, Inc.
Gordin, Michael D. 2015. Scientific Babel: How Science Was Done Before and After Global
English.Chicago;London:TheUniversityofChicagoPress.
Hiriart-Urruty, Jean-Baptiste; Lemaréchal, Claude. 1993. Convex Analysis and Minimization
Algorithms I: Fundamentals.Berlinetal.:Springer.
Hiriart-Urruty, Jean-Baptiste; Lemaréchal, C laude. 2001. Fundamentals of Convex Analysis.
Berlin et al.: Springer.
Hörmander, Lars. 1963. Konvexa och subharmoniska funktioner. Seminarier, Stockholms uni-
versitet ht 63 [Convex and subharmonic functions. Seminars, Stockholm University, Fall
Term 1963].
Hörmander, Lars. 1983. The Analysis of Linear Partial Differential Operators I. Distribution
Theory and Fourier Analysis.Berlinetal.:Springer-Verlag.
Hörmander, Lars. 1994. Notions of Convexity.Bostonetal.:Birkhäuser.
Ioffe, A. D.; Tikhomirov, V. M. 1968. Duality of convex functions and extremum problems (in
Russian). Uspekhi Mat. Nauk 23,No.6,51–116.
Jackson, Allyn. 1997. Chinese Acrobatics, an Old-Time Brewery, and the “Much Needed Gap”:
The Life of Mathematical Reviews. Notices Amer. Math. Soc. 44 (3), 330–337.
Jacoby, Ruth. 2015. Så skapades den makabra bilden av nazisternas ”mönsterläger” [Thus was
created the macabre image of the Nazis’ “Model Camp”]. Dagens Nyheter 2015 May 10.
Jessen, Børge. 1987. Matematiker blandt de tyske emi granter: Otto Neugeb auer, Werner og
Käte Fenchel, Herbert Buse man n, Willy Feller [Mathematicians among the German emi-
grants: Otto Neugebauer, Werner and Käte Fenchel, Herbert Busemann, Willy Feller]. In:
Steffensen, Steffen. På flugt fra nazismen. Tysksprogede emigranter i Danmark efter 1933,
pp. 86–91. Edited by Willy Dähnhardt and Birgit S. Nielsen. Second edition. Copenhagen:
C. A. Reitzels Forlag.
Kiselman, Christer O. 1978. The partial Legendre transformation for plurisubharmonic functions.
Invent. Math. 49,No.2,137–148.
Kiselman, Christer O. 2004. Convex functions on discrete sets. In: Klette, R.; Zunic, J., Eds.
Combinatorial Image Analysis. 10th International Workshop, IWCIA 2004; Auckland, New
Zealand, December 1–3, 2004; Proceedings,pp.443–457. LectureNotesinComputerScience
3322.
Kiselman, Christer O. 2010. Inverses and quotients of mappings between ordered sets. Image
and Vision Computing 28,1429–1442.
Kiselman, Christer O. 2015. Estimates for solutions to discrete convolution equations. Mathe-
matika 61,issue02,295–308.