Normat 2/2013 Trond Steihaug and D. G. R ogers 109
[11] H. G. Flegg, Numbers: Their History and Meaning (Schocken Books, New
York, NY, 1983; reissued Dover, Mineola, NY, 2002; 2013).
[12] J. Gow, A Short History of Greek Mathematics (Cambridge Unive rsity Press,
Cambridge, 1884).
[13] K.-G. Hagström, Gustaf Eneström, Nordisk Matematisk Tidskrift, 1 (1953),
145–155.
[14] T. L. Heath, The Works of Archimedes, edited in modern notation with in-
troductory chapters. With a supplement, The Method of Archimedes, recently
discovered by Heiberg (Cambridge University Press, Cambridge, 1897; 2nd ed.,
with supplement, 1912; reprt., Dover Pub., New York, NY, 1953)
[15] T. L. Heath, A History of Greek Mathematics (Clarendon Press, Oxford, 1921).
[16] T. L. Heath, A Manual of Greek Mathematics (Oxford University Press, Ox-
ford, 1931).
[17] A. Hee ffe r, Was Uncle Tom right that quadratic problems can’t be solved with
the rule of false position? Mathematical Intelligencer, 36 (2014), No. 3, 65–69.
[18] A. Holme, Geometry: Our Cultural Heritage (Springer, New York, NY, 2010).
[19] B. Hughes, ed., Fibonacci’s De Practica Geometrie (Springer, New York, NY,
2008).
[20] W. R. Knorr, The Ancient Tradition of Geometric Problems (Birkhäuser, Bo-
ston, MA, 1986).
[21] W. R. Knorr, Textual Studies in Ancient and Medieval Geometry (Birkhäuser,
Boston, MA, 1989).
[22] H. L’Huillier, Concerning the method employed by Nicolas Chuquet for the
extraction of cube roots, in C. Hay, ed., Mathematics from Manuscript to Print
(Clarendon Press, Oxford, 1988), pp. 89–95.
[23] R. Pendlebury, On a method of finding two m ean proportionals, Messenger of
Mathematics, ser., 2 , 2 (1873), 166-169.
[24] H. Schöne, ed., Heron is Alexandrini Opera Quae Supersunt Omnia, III
(B. G. Teubner, Leipzig, 1903).
[25] D. E. Smith, History of Mathematics, Vol. 2 (Ginn, Boston, MA, 1925; rev.
ed. reprt., Dover Pub., New York, NY, 1958).
[26] J. G. Smyly, Heron’s formula for cube root, Hermathena, 19 (1920), No. 42,
64–67.
[27] J. G. Smyly, Some examples of Greek arithmetics, Hermathena, 19 (1920),
No. 42, 105–114.
[28] C. M. Taisbak, Cube roots of integers. A conjecture about Heron’s method in
Metrika III.20 , Historia Math., 41 (2014), 103–104.